Skip to main content
Log in

Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier’s method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  2. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  3. Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E.: Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)

    Article  Google Scholar 

  4. Oshima C., Nagashima A.: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter 9, 1 (1997)

    Article  Google Scholar 

  5. Obraztsov A.N., Obraztsova E.A., Tyurnina A.V., Zolotukhin A.A.: Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017 (2007)

    Article  Google Scholar 

  6. Gomez-Navarro C., Weitz R.T., Bittner A.M., Scolari M., Mews A., Burghard M., Kern K.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499 (2007)

    Article  Google Scholar 

  7. Li X.L., Wang X.R., Zhang L., Lee S.W., Dai H.J.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008)

    Article  Google Scholar 

  8. Stankovich S. et al.: Graphene-based composite materials. Nature 442, 282 (2006)

    Article  Google Scholar 

  9. Stankovich S. et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 7, 1558–1565 (2007)

    Article  Google Scholar 

  10. Ferrari A.C.: Raman spectroscopy of graphene and graphite: disorder, electronphonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  11. Katsnelson M.I., Novoselov K.S.: Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3–13 (2007)

    Article  Google Scholar 

  12. Meyer C.J. et al.: The structure of suspended graphene sheets. Nature 446, 60 (2006)

    Article  Google Scholar 

  13. Bunch J., van der Zande A.M., Scott S.V., Ian W.F., David M.T., Jeevak M.P., Harold G.C., Paul L.M.E: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)

    Article  Google Scholar 

  14. Ball P.: Roll up for the revolution. Nature (London) 414, 142 (2001)

    Article  Google Scholar 

  15. Baughman R.H., Zakhidov A.A., de Heer W.A.: Carbon nanotubes the route towards applications. Science 297, 787 (2002)

    Article  Google Scholar 

  16. Bodily B.H., Sun C.T.: Structural and equivalent continuum properties of single-walled carbon nanotubes. Int. J. Mat. Prod. Tech. 18, 381 (2003)

    Google Scholar 

  17. Li C., Chou T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487 (2003)

    Article  MATH  Google Scholar 

  18. Li C., Chou T.W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)

    Article  Google Scholar 

  19. Sharma P., Ganti S., Bhate N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535 (2003)

    Article  Google Scholar 

  20. Sun C.T., Zhang H.: Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 93, 1212 (2003)

    Article  Google Scholar 

  21. Sheehan P.E., Lieber C.M.: Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1156 (1996)

    Article  Google Scholar 

  22. Yakobson B.I., Smalley R.: Fullerene nanotubes: C1,000,000 and beyond. Am. Sci. 85, 324 (1997)

    Google Scholar 

  23. Terrones M., Grobert N., Hsu W., Hu Y., Terrones J., Kroto H., Ealton D.: Bulk glass-forming metallic alloys: science and technology. Mater. Res. Bull. 24, 43 (1999)

    Google Scholar 

  24. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  25. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York, NY (2002)

    MATH  Google Scholar 

  26. Eringen A.C., Edelen D.G.B.: On non-local elasticity. Int. J. Eng. Sci. 10, 233 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Eringen A.C.: Linear theory of non-local elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425 (1972)

    Article  MATH  Google Scholar 

  28. Eringen A.C.: Non-local Polar Field Models. Academic, New York (1996)

    Google Scholar 

  29. Lu P., Lee H.P., Lu C., Zhang P.Q.: Dynamic properties of flexural beams using a non-local elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  Google Scholar 

  30. Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)

    Article  MATH  Google Scholar 

  31. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305 (2003)

    Article  Google Scholar 

  32. Lazar M., Maugin G., Aifantis E.C.: On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int. J. Solids Struct. 43, 1404–1421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou S.J., Li Z.Q.: Length scales in the static and dynamic torsion of a circular cylindrical micro-bar. J. Shandong Univ. Technol. 31, 401–407 (2001)

    Google Scholar 

  34. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 296–358 (1997)

    Google Scholar 

  35. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  36. Ozer T.: On the symmetry group properties of equations of nonlocal elasticity. Mech. Res. Commun. 26, 725–733 (1999)

    Article  MathSciNet  Google Scholar 

  37. Murmu T., Pradhan S.C.: Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105, 064319 (2009)

    Article  Google Scholar 

  38. Murmu T., Pradhan S.C.: Buckling of biaxially compressed orthotropic plates at small scales. Mech. Res. Commun. 36, 933–938 (2009)

    Article  Google Scholar 

  39. Pradhan S.C., Murmu T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci 47, 268 (2009)

    Article  Google Scholar 

  40. Duan W.H., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    Article  Google Scholar 

  41. Sakhaee-Pour A.: Elastic buckling of single-layered graphene sheet. Comput. Mater. Sci. 45, 266–270 (2009)

    Article  Google Scholar 

  42. Aydogdu M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys. E 41, 861–864 (2009)

    Article  Google Scholar 

  43. Pradhan S.C., Phadikar J.K.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A. 37, 1062–1069 (2009)

    Article  Google Scholar 

  44. Wang C.M., Duan W.H.: Free vibration of nanorings/arches based on nonlocal elasticity. J. Appl. Phys. 104, 014303 (2008)

    Article  Google Scholar 

  45. Yang J., Jia X.L., Kitipornchai S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D 41, 035103 (2008)

    Article  Google Scholar 

  46. Reddy J.N., Pang S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  47. Murmu T., Pradhan S.C.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys. E 41, 1232–1239 (2009)

    Article  Google Scholar 

  48. Heireche H., Tounsi A., Benzair A., Maachou M., Adda Bedia E.A.: Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Phys. E 40, 2791–2799 (2008)

    Article  Google Scholar 

  49. Wang L.: Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Comput. Mater. Sci. 45, 584–588 (2009)

    Article  Google Scholar 

  50. Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281 (2003)

    Article  Google Scholar 

  51. Zhang Y.Q., Liu G.R., Xie X.Y.: Free transverse vibration of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  Google Scholar 

  52. Narendar S., Gopalakrishnan S.: Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Comput. Mater. Sci. 47, 526 (2009)

    Article  Google Scholar 

  53. Narendar S., Gopalakrishnan S.: Terahertz wave characteristics of a single-walled carbon nanotube containing a fluid flow using the nonlocal Timoshenko beam model. Phys. E 42, 1706 (2010)

    Article  Google Scholar 

  54. Narendar S., Gopalakrishnan S.: Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Phys. E 42, 1601 (2010)

    Article  Google Scholar 

  55. Narendar S., Gopalakrishnan S.: Theoretical estimation of length dependent in-plane stiffness of single walled carbon nanotubes using the nonlocal elasticity theory. J. Comput. Theor. Nanosci. 7(11), 2349 (2010)

    Article  Google Scholar 

  56. Narendar S., Gopalakrishnan S.: Investigation of the effect of nonlocal scale on ultrasonic wave dispersion characteristics of a monolayer graphene. Comput. Mater. Sci. 49, 734 (2010)

    Article  Google Scholar 

  57. Narendar S., Gopalakrishnan S.: Ultrasonic wave characteristics of nanorods via nonlocal strain gradient models. J. Appl. Phys. 107, 084312 (2010)

    Article  Google Scholar 

  58. Narendar S., Gopalakrishnan S.: Strong nonlocalization induced by small scale parameter on terahertz flexural wave dispersion characteristics of a monolayer graphene. Phys. E 43, 423–430 (2010)

    Article  Google Scholar 

  59. Xu M.: Transverse vibrations of nano-to-micron scale beams. Proc. Royal Soc. A Math. Phys. Eng. Sci. 462, 2977 (2006)

    Article  MATH  Google Scholar 

  60. Wang Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  61. Wang Q., Varadan V.K.: Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater. Struct. 16, 178 (2007)

    Article  Google Scholar 

  62. Pradhan S.C.: Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys. Lett. A 373, 4182–4188 (2009)

    Article  Google Scholar 

  63. Lu Q., Huang R.: Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 1(3), 443–467 (2009)

    Article  Google Scholar 

  64. Fasolino A., Los J.H., Katsnelson M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858–861 (2007)

    Article  Google Scholar 

  65. Meyer J.C., Geim A.K., Katsnelson M.I., Novoselov K.S., Booth T.J., Roth S.: The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)

    Article  Google Scholar 

  66. Nelson D.R., Piran T., Weinberg S.: Statistical Mechanics of Membranes and Surfaces. World Scientific Pub, Singapore (2004)

    MATH  Google Scholar 

  67. Arroyo M., Belytschko T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69(11), 115415 (2004)

    Article  Google Scholar 

  68. Huang Y., Wu J., Hwang K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74(24), 033524 (2006)

    Article  Google Scholar 

  69. Wong E.W., Sheehan P.E., Lieber C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  70. Sorop T.G., de Jongh L.J.: Size-dependent anisotropic diamagnetic screening in superconducting Sn nanowires. Phys. Rev. B 75, 014510 (2007)

    Article  Google Scholar 

  71. Reddy J.N.: Mechanics of Laminated Composite Plates, Theory and Analysis. Chemical Rubber Company, Boca Raton, FL (1997)

    MATH  Google Scholar 

  72. Hu Y.G., Liew K.M., Wang Q., He X.Q., Yakobson B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56(12), 3475 (2008)

    Article  MATH  Google Scholar 

  73. Wang L.F., Hu H.Y.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  74. Zhang X., Jiao K., Sharma P., Yakobson B.I.: An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene. J. Mech. Phys. Solids 54, 2304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. Wang Q., Han Q.K., Wen B.C.: Estimate of material property of carbon nanotubes via nonlocal elasticity. Adv. Theor. Appl. Mech. 1(1), 1–10 (2008)

    Google Scholar 

  76. Zhang Y.Y., Wang C.M., Tan V.B.C.: Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv. Appl. Math. Mech. 1(1), 89–106 (2009)

    MathSciNet  Google Scholar 

  77. Yakobson B.I., Brabec C. J., Bernholc J.: Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  78. Duan W.H., Wang C.M., Zhang Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Article  Google Scholar 

  79. Narendar S., Roy Mahapatra D., Gopalakrishnan S.: Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int. J. Eng. Sci 49, 509–522 (2011)

    Article  MathSciNet  Google Scholar 

  80. Duan W.H., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    Article  Google Scholar 

  81. Wang Q., Wang C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18, 075702 (2007)

    Article  Google Scholar 

  82. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288 (2007)

    Article  MATH  Google Scholar 

  83. Reddy C.D., Rajendran S., Liew K.M.: Equilibrium configuration and elastic properties of finite graphene. Nanotechnology 17, 864–870 (2006)

    Article  Google Scholar 

  84. Kim S.E., Thai H.T., Lee J.: Buckling analysis of plates using the two variable refined plate theory. Thin-Walled Struct. 47, 455–462 (2009)

    Article  Google Scholar 

  85. Shimpi R.P., Patel H.G.: A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43, 6783–6799 (2006)

    Article  MATH  Google Scholar 

  86. Hernandez E., Goze C., Bernier P., Rubio A.: Elastic properties of C and B x C y N z composite nanotubes. Phys. Rev. B 80, 4502–4505 (1998)

    Article  Google Scholar 

  87. Wang Q.: Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon. Int. J. Solids Struct. 41, 5451–5461 (2004)

    Article  MATH  Google Scholar 

  88. Li C., Chou T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  89. Pradhan S.C., Phadikar J.K.: Phadikar nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narendar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narendar, S., Gopalakrishnan, S. Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223, 395–413 (2012). https://doi.org/10.1007/s00707-011-0560-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0560-5

Keywords

Navigation