Skip to main content
Log in

Stress-dependent thermal relaxation effects in micro-mechanical resonators

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Thermal relaxation is a key factor in determining the quality factor of micro and nano resonators, which controls the energy dissipation through the coupling of the mechanical and thermal domains. While the literature contains approximate, exact and computational models for quantitative analysis of thermo-elastic coupling, very few techniques are available to ‘tune’ it without changing the material, geometry or operating conditions. In this paper, we develop an analytical model that considers a pre-stress in a flexural resonator to modify the thermal relaxation time and thus increase the quality factor. The effects of length-scale, pre-stress and geometry on the quality factor have been analyzed. The model predicts that significant improvement in terms of dimensionless quality factors is possible by tuning the pre-stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi Y.B.: Geometric effects on thermoelastic damping in MEMS resonators. J. Sound Vib. 309, 588–599 (2008)

    Article  Google Scholar 

  2. Duwel A., Candler R.N., Kenny T.W., Varghese M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15, 1437–1445 (2006)

    Article  Google Scholar 

  3. Mihailovich R.E., MacDonald N.C.: Dissipation measurements of vacuum-operated single-crystal silicon microresonators. Sens. Actuators A 50, 199–207 (1995)

    Article  Google Scholar 

  4. Zhang C., Xu G., Jiang Q.: Analysis of the air-damping effect on a micromachined beam resonator. Math. Mech. Solids 8, 315–325 (2003)

    Article  MATH  Google Scholar 

  5. Hao Z., Ayazi F.: Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators. Sens. Actuators A 134, 582–593 (2007)

    Article  Google Scholar 

  6. Lifshitz R., Roukes M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600 (2000)

    Article  Google Scholar 

  7. Zener C.: Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 53, 90 (1938)

    Article  Google Scholar 

  8. Zener C., Otis W., Nuckolls R.: Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Phys. Rev. 53, 100 (1938)

    Article  Google Scholar 

  9. Zener C.: Internal friction in solids. Proc. Phys. Soc. 52, 152–166 (1940)

    Article  Google Scholar 

  10. Zener C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230 (1937)

    Article  Google Scholar 

  11. Nayfeh A.H., Younis M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 1711–1717 (2004)

    Article  Google Scholar 

  12. Rajagopalan J., Saif M.T.A.: Single degree of freedom model for thermoelastic damping. J. Appl. Mech. Trans. ASME 74, 461–468 (2007)

    Article  MATH  Google Scholar 

  13. Guo F.L., Rogerson G.A.: Thermoelastic coupling effect on a micro-machined beam resonator. Mech. Res. Commun. 30, 513–518 (2003)

    Article  MATH  Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7, 3rd edn. Butterworth Heinemann, London (2007)

  15. Sun Y., Fang D., Soh A.K.: Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 43, 3213–3229 (2006)

    Article  MATH  Google Scholar 

  16. Duwel A., Candler R.N., Kenny T.W., Varghese M.A.V.M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15, 1437–1445 (2006)

    Article  Google Scholar 

  17. Yi Y.-B., Matin M.A.: Eigenvalue solution of thermoelastic damping in beam resonators using a finite element analysis. J. Vib. Acoust. 129, 478–483 (2007)

    Article  Google Scholar 

  18. Koyama, T., Bindel, D.S., Wei, H., Quevy, E.P., Govindjee, S., Demmel, J.W., Howe, R.T.: Simulation tools for damping in high frequency resonators. Presented at fourth IEEE conference on sensors 2005, Irvine, CA, United States, 31 Oct–3 Nov 2005

  19. Shaker, F.J.: Efect of Axial load on Mode Shapes and Frequencies of Beams, vol. NASA TN D-8109, NASA, Ed. (1975)

  20. Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook, 5th edn. McGraw-Hill, New York (2002)

  21. Verbridge S.S., Shapiro D.F., Craighead H.G., Parpia J.M.: Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728–1735 (2007)

    Article  Google Scholar 

  22. Scott S.V., Jeevak M.P., Robert B.R., Leon M.B., Craighead H.G.: High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006)

    Article  Google Scholar 

  23. Kumar S., Haque M.A.: Reduction of thermoelastic damping with a secondary elastic field. J. Sound Vib. 318, 423–427 (2008)

    Article  Google Scholar 

  24. Bokaian A.: Natural frequencies of beams under tensile axial loads. J. Sound Vib. 142, 481–498 (1990)

    Article  Google Scholar 

  25. Mastrangelo C.H., Tai Y.-C., Muller R.S.: Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators A Phys. 23, 856–860 (1990)

    Article  Google Scholar 

  26. Xiang Z., Costas P.G.: Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 66, 1115–1120 (1995)

    Article  Google Scholar 

  27. Wylde, J., Hubbard, T.J.: Elastic properties and vibration of micro-machined structures subject to residual stresses. Presented at electrical and computer engineering, 1999 IEEE Canadian conference (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aman Haque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Aman Haque, M. Stress-dependent thermal relaxation effects in micro-mechanical resonators. Acta Mech 212, 83–91 (2010). https://doi.org/10.1007/s00707-009-0244-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0244-6

Keywords

Navigation