Acta Mechanica

, Volume 203, Issue 3, pp 197-221

First online:

Shear deformation effect in flexural–torsional vibrations of beams by BEM

  • E. J. SapountzakisAffiliated withInstitute of Structural Analysis, School of Civil Engineering, National Technical University of Athens Email author 
  • , J. A. DourakopoulosAffiliated withInstitute of Structural Analysis, School of Civil Engineering, National Technical University of Athens

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this paper, a boundary element method is developed for the general flexural–torsional vibration problem of Timoshenko beams of arbitrarily shaped cross section taking into account the effects of warping stiffness, warping and rotary inertia and shear deformation. The beam is subjected to arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by the most general linear boundary conditions. The resulting initial boundary value problem, described by three coupled partial differential equations, is solved employing a boundary integral equation approach. Besides the effectiveness and accuracy of the developed method, a significant advantage is that the displacements as well as the stress resultants are computed at any cross-section of the beam using the respective integral representations as mathematical formulae. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Both free and forced vibrations are examined. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy.