, Volume 200, Issue 3-4, pp 129-144

Transient Couette flow in a rotating non-Darcian porous medium parallel plate configuration: network simulation method solutions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The transient, viscous, incompressible, hydrodynamic Couette flow in a rotating porous medium channel is studied in this paper. The channel comprises a pair of infinitely long parallel plates which rotate with uniform angular velocity about an axis normal to the plates. The porous medium is simulated using a Darcy–Forchheimer drag force model which includes both bulk matrix porous drag (dominant at low Reynolds numbers) and second order inertial impedance (dominant at higher Reynolds numbers). The two-dimensional Navier–Stokes equations are reduced to a (z*, t*) coordinate system incorporating Coriolis terms, and appropriate initial and boundary conditions are prescribed. Separate porous drag body force terms are incorporated in both the primary and secondary flow momentum equations. Using a set of transformations, the model is rendered dimensionless and shown to be dictated by the Ekman number, Forchheimer number, Darcy number and Reynolds number in a (z, t) coordinate system. Numerical solutions are obtained for the transformed model using the Network Simulation Method. The influence of the hydrodynamic parameters are computed graphically and also the interaction of parameters on the velocity fields is discussed at length. Excellent agreement is found with earlier non-porous flow studies. The analysis has important applications in geophysics and also chemical engineering systems.