Skip to main content
Log in

The Composite Eshelby Tensors and their applications to homogenization

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In recent studies, the exact solutions of the Eshelby tensors for a spherical inclusion in a finite, spherical domain have been obtained for both the Dirichlet- and Neumann boundary value problems, and they have been further applied to the homogenization of composite materials [15], [16]. The present work is an extension to a more general boundary condition, which allows for the continuity of both the displacement and traction field across the interface between RVE (representative volume element) and surrounding composite. A new class of Eshelby tensors is obtained, which depend explicitly on the material properties of the composite, and are therefore termed “the Composite Eshelby Tensors”. These include the Dirichlet- and the Neumann-Eshelby tensors as special cases. We apply the new Eshelby tensors to the homogenization of composite materials, and it is shown that several classical homogenization methods can be unified under a novel method termed the “Dual Eigenstrain Method”. We further propose a modified Hashin-Shtrikman variational principle, and show that the corresponding modified Hashin-Shtrikman bounds, like the Composite Eshelby Tensors, depend explicitly on the composite properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiu Y. P. (1977). On the stress field due to initial strains in cuboid surrounded by an infinite elastic space. J. Appl. Mech. 44: 587–590

    MATH  Google Scholar 

  • Christensen R. M. and Lo K. H. (1979). Solutions for the effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27: 315–330

    Article  MATH  Google Scholar 

  • Eshelby J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A 241: 376–396

    Article  MATH  MathSciNet  Google Scholar 

  • Eshelby J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proc. Roy. Soc. A 252: 561–569

    Article  MATH  MathSciNet  Google Scholar 

  • Eshelby, J. D.: Elastic inclusions and inhomogeneities. In: Progress in solid mechanics, Vol. 2. pp. 89–104 (Snedden, N. I., Hill, R., eds.). North-Holland 1961

  • Hashin Z. and Shtrikman S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10: 335–342

    Article  MathSciNet  Google Scholar 

  • Hashin Z. and Shtrikman S. (1962b). A variational approach to the theory of the elastic behavior of polycrystals. J. Mech. Phys. Solids 10: 343–352

    Article  MathSciNet  Google Scholar 

  • Hashin Z. (1991). The spherical inclusion with imperfect interface. J. Appl. Mech. 58: 444–449

    Article  Google Scholar 

  • Hashin Z. (2002). The interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50: 2509–2537

    Article  MATH  MathSciNet  Google Scholar 

  • Hill, R.: New derivations of some elastic extremum principles. In: Progress in applied mechanics – The Prager anniversary volume, pp. 99–106. New York: Macmillan 1963

  • Hill R. (1965a). Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13: 89–101

    Article  MATH  Google Scholar 

  • Hill R. (1965b). Theory of mechanical properties of fibre-strengthened materials III. Self-consistent model. J. Mech. Phys. Solids 13: 189–198

    Article  Google Scholar 

  • Jiang B. and Weng G. J. (2004). A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J. Mech. Phys. Solids 52: 1125–1149

    Article  MATH  Google Scholar 

  • Li S., Sauer R. and Wang G. (2005). A circular inclusion in a finite domain. I. The Dirichlet-Eshelby problem. Acta Mech. 179: 67–90

    Article  MATH  Google Scholar 

  • Li S., Sauer R. A. and Wang G. (2007a). The Eshelby tensors in a finite spherical domain: I. Theoretical formulations. J. Appl. Mech. 74: 770–783

    Article  MathSciNet  Google Scholar 

  • Li S., Wang G. and Sauer R. A. (2007b). The Eshelby tensors in a finite spherical domain: II. Applications in homogenization. J. Appl. Mech. 74: 784–797

    Article  MathSciNet  Google Scholar 

  • Löhnert, S.: Computational homogenization of microheterogeneous materials at finite strains including damage. Dissertation, Universität Hannover 2004

  • Luo H. A. and Weng G. J. (1987). On Eshelby’s inclusion problem in a three-phase spherically concentric solid and a modification of Mori-Tanaka’s method. Mech. Mater. 6: 347–361

    Article  Google Scholar 

  • Luo H. A. and Weng G. J. (1989). On Eshelby’s S-tensor in a three-phase cylindrical concentric solid and the elastic moduli of fibre-reinforced composites. Mech. Mater. 8: 77–88

    Article  Google Scholar 

  • Marur P. R. (2005). Effective elastic moduli of syntactic foams. Mater. Lett. 59: 1954–1957

    Article  Google Scholar 

  • Mura T. and Kinoshita N. (1978). The polynomial eigenstrain problem or an anisotropic ellipsoidal inclusion. Phys. Status Solidi A 48: 447–450

    Article  Google Scholar 

  • Mura T. (1987). Micromechanics of defects in solids, 2nd ed. Martinus Nijhoff, Boston

    Google Scholar 

  • Nemat-Nasser S. and Hori M. (1999). Micromechanics: overall properties of heterogeneous materials, 2nd ed. Elsevier, Amsterdam

    Google Scholar 

  • Qiu Y. P. and Weng G. J. (1991). Elastic moduli of thickly coated particle and fiber-reinforced composites. J. Appl. Mech. 58: 388–398

    Article  MATH  Google Scholar 

  • Rodin G. J. (1996). Eshelby's inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids 44: 1977–1995

    Article  Google Scholar 

  • Saidi F., Bernabé Y. and Reuschlé T. (2005). Uniaxial compression of synthetic, poorly consolidated granular rock with a bimodal grain-size distribution. Rock Mech. Rock Engng. 38: 129–144

    Article  Google Scholar 

  • Sharma P. and Ganti S. (2004). Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71: 663–671

    Article  MATH  Google Scholar 

  • Somigliana, C.: Sopra l’equilibrio di un corpo elastico isotropo, pp. 17–19. Il Nuovo Ciemento 1886

  • Wang G., Li S. and Sauer R. (2005). A circular inclusion in a finite domain. II. The Neumann–Eshelby problem. Acta Mech. 179: 91–110

    Article  Google Scholar 

  • Willis, J. R.: Variational and related methods for the overall properties of composites. In: Advances in applied mechanics (Yih, C.-S., ed.), Vol. 21, pp. 1–78. New York: Academic Press 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, R.A., Wang, G. & Li, S. The Composite Eshelby Tensors and their applications to homogenization. Acta Mech 197, 63–96 (2008). https://doi.org/10.1007/s00707-007-0504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0504-2

Keywords

Navigation