Skip to main content
Log in

The population genetics of maize dwarf mosaic virus in Spain

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The population genetics of maize dwarf mosaic virus (MDMV) in Spain was assessed by analysis of the P1-HC region. Restriction fragment length polymorphism analysis of 363 isolates revealed that the MDMV population consisted of 69 haplotypes. Sequence analysis of 112 isolates confirmed a high degree of nucleotide sequence diversity (0.143), which was higher for P1 than for the HC. Twelve sequences showed a single different recombination event. Selection pressure analysis revealed that the P1-HC region was under strong negative selection. The MDMV population was spatially structured but not structured temporally or by host. Phylogenetic analysis split the sequences into five major groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Achon MA, Medina V, Shanks M, Markham P, Lomonossoff GP (1994) Characterisation of a maize-infecting potyvirus from Spain. Eur J Plant Pathol 100:157–165

    Article  Google Scholar 

  2. Achon MA, Sobrepere M (2001) Incidence of Potyviruses in commercial maize fields and their seasonal cycles in Spain. Z PflKrankh Pfl Shutz 108:399–406

    CAS  Google Scholar 

  3. Achon MA, Serrano L, Alonso-Dueñas N, Porta C (2007) Complete genome sequences of Maize dwarf mosaic and Sugarcane mosaic virus isolates coinfecting maize in Spain. Arch Virol 152:2073–2978

    Article  PubMed  CAS  Google Scholar 

  4. Achon MA, Alonso-Dueñas N, Serrano L (2011) Maize dwarf mosaic virus diversity in the Johnsongrass native reservoir and in maize: evidence of geographical, host and temporal differentiation. Plant Pathol 60:369–377

    Article  Google Scholar 

  5. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  PubMed  CAS  Google Scholar 

  6. Chare ER, Holmes EC (2006) A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151:933–946

    Article  PubMed  CAS  Google Scholar 

  7. Desbiez C, Lecop H (2008) Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Arch Virol 153:1749–1754

    Article  PubMed  CAS  Google Scholar 

  8. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913

    Article  PubMed  CAS  Google Scholar 

  9. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  10. Ford RE, Tosic M, Shukla DD (1989) Maize dwarf mosaic virus. Descriptions of plant viruses No 341. Kew, UK: Commonwealth Mycological Institute

  11. Garcia-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186

    Article  PubMed  CAS  Google Scholar 

  12. Gell G, Balazs E, Petrik K (2010) Genetic diversity of Hungarian Maize dwarf mosaic virus isolates. Virus Genes 40:277–281

    Article  PubMed  CAS  Google Scholar 

  13. Gibbs A, Ohshima K (2010) Potyviruses and the digital revolution. Annu Rev Phytopathol 48:205–223

    Article  PubMed  CAS  Google Scholar 

  14. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  15. Kosakovsky Pond SL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  Google Scholar 

  16. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  PubMed  CAS  Google Scholar 

  17. Moreno IM, Malpica JM, Díaz-Pendón JA, Moriones E, Fraile A, García-Arenal F (2004) Variability and genetic structure of the population of Watermelon mosaic virus infecting melon in Spain. Virology 318:451–460

    Article  PubMed  CAS  Google Scholar 

  18. Moury B, Desbiez C, Jacquemond M, Lecoq H (2006) Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 67:49–87

    Article  PubMed  CAS  Google Scholar 

  19. Moury B (2010) A new lineage sheds light on the evolutionary history of Potato virus Y. Mol Plant Pathol 11:161–168

    Article  PubMed  CAS  Google Scholar 

  20. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163

    PubMed  CAS  Google Scholar 

  21. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  22. Ohshima K, Yamaguchi Y, Hirota R, Hamamoto T, Tomimura K et al (2002) Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521

    PubMed  CAS  Google Scholar 

  23. Ohshima K, Tomitaka Y, Wood JT, Minematsu Y, Kajiyama H, Tomimura K et al (2007) Patterns of recombination in Turnip mosaic virus genomic sequences indicate hotspots of recombination. J Gen Virol 88:298–315

    Article  PubMed  CAS  Google Scholar 

  24. Ogawa T, Tomitaka Y, Nakagawa A, Ohshima K (2008) Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Res 131:199–212

    Article  PubMed  CAS  Google Scholar 

  25. Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy, genes: rates and interdependence between the genes. J Mol Evol 10:271–281

    CAS  Google Scholar 

  26. Revers F, Le Gall O, Candresse T, Maule AJ (1999) New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant Microbe Interact 12:367–376

    Article  CAS  Google Scholar 

  27. Salvador B, Delgadillo MO, Sáenz P, García JA, Simón-Mateo C (2008) Identification of Plum pox virus pathogenicity determinants in herbaceous and woody hosts. Mol Plant Microbe Interact 21:20–29

    Article  PubMed  CAS  Google Scholar 

  28. Seo JK, Ohshima K, Lee HG, Son M, Choi HS, Lee SH, Sohn SH, Kim KH (2009) Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology 393:91–103

    Article  PubMed  CAS  Google Scholar 

  29. Tomimura K, Spak J, Katis N, Jenner CE, Walsh JA, Gibbs A, Ohshima K (2004) Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330:408–423

    Article  PubMed  CAS  Google Scholar 

  30. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the project AGL-2006-03859 of the Ministry of Education and Science of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Achon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achon, M.A., Larrañaga, A. & Alonso-Dueñas, N. The population genetics of maize dwarf mosaic virus in Spain. Arch Virol 157, 2377–2382 (2012). https://doi.org/10.1007/s00705-012-1427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1427-3

Keywords

Navigation