Skip to main content
Log in

Assessment of multiple precipitation products over major river basins of China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

As the largest component of the global water cycle, precipitation plays a critical role in determining available water in the terrestrial ecosystems. Numerous precipitation products have been generated during the last decades, but they differ substantially in terms of their spatial and temporal variations. In this study, we compared seven precipitation products covering ten major river basins of China from 1980 to 2007 and found large differences among the products. Overall, the Global Precipitation Climatology Center (GPCC) product shows the highest correlation with rain gauge measurements and lowest estimation errors over the ten basins. The performances of other products also clearly differ over the ten basins, and the maximum estimates were 1.27 ± 0.21 times the minimum estimates in terms of interannual variability in precipitation. Based on the seven products, we generated a new precipitation dataset using the Bayesian model averaging method. Compared with all the individual products, the new dataset indicates the decreased root mean square error and increased coefficient of correlation. In the statistical analysis of the weight for each of the products, the GPCC product contributed the maximum weight among almost all river basins. Both the ERA-Interim and MERRA products contributed the minimum weights, being less than 10 %. Our results highlight the need to investigate and improve the performance of precipitation products when evaluating the regional water balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res: Atmos 108(D9):4257. doi:10.1029/2002jd002499

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167. doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

    Article  Google Scholar 

  • Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43 (1):n/a-n/a. 10.1029/2005wr004745

  • Andersson E, Bauer P, Beljaars A, Chevallier F, Hólm E, Janisková M, Kållberg P, Kelly G, Lopez P, McNally A, Moreau E, Simmons AJ, Thépaut J-N, Tompkins AM (2005) Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull Am Meteorol Soc 86(3):387–402. doi:10.1175/bams-86-3-387

    Article  Google Scholar 

  • Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst Sci Data 5(1):71–99. doi:10.5194/essd-5-71-2013

    Article  Google Scholar 

  • Berrisford P, Kållberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137(659):1381–1399. doi:10.1002/qj.864

    Article  Google Scholar 

  • Beven KJ (1999) Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sci 4(2):203–213. doi:10.5194/hess-4-203-2000

    Article  Google Scholar 

  • Blanke A, Rozelle S, Lohmar B, Wang J, Huang J (2007) Water saving technology and saving water in China. Agric Water Manag 87(2):139–150. doi:10.1016/j.agwat.2006.06.025

    Article  Google Scholar 

  • Bosilovich MG, Schubert SD, Walker GK (2005) Global changes of the water cycle intensity. J Clim 18(10):1591–1608. doi:10.1175/jcli3357.1

    Article  Google Scholar 

  • Boyle KJ, Holmes TP, Teisl MF, Roe B (2001) A comparison of conjoint analysis response formats. Am J Agric Econ 83(2):441–454. doi:10.2307/1244685

    Article  Google Scholar 

  • Chadwick R, Grimes D (2012) An artificial neural network approach to multispectral rainfall estimation over Africa. J Hydrometeorol 13(3):913–931. doi:10.1175/jhm-d-11-081.1

    Article  Google Scholar 

  • Cui M-c, Ming F, Shu-min L, Arpe K, Dümenil L (2000) Evaluation of daily precipitation in China from ECMWF and NCEP reanalyses. Chin J Ocean Limnol 18(1):35–41. doi:10.1007/bf02842539

    Article  Google Scholar 

  • Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng X, Bosilovich MG (2011) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Clim 25(6):1916–1944. doi:10.1175/jcli-d-11-00004.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dragani R, Dee D (2008) Progress in ozone monitoring and assimilation. ECMWF Newsl 116:35–42

    Google Scholar 

  • Duan Q, Phillips TJ (2010) Bayesian estimation of local signal and noise in multimodel simulations of climate change. J Geophys Res: Atmos 115(D18), D18123. doi:10.1029/2009jd013654

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17(2):294–304. doi:10.1175/1520-0442(2004)017<0294:uipati>2.0.co;2

    Article  Google Scholar 

  • Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD (2002) Quantifying uncertainties in climate system properties with the Use of recent climate observations. Science 295(5552):113–117. doi:10.1126/science.1064419

    Article  Google Scholar 

  • Fraley C, Raftery AE, Gneiting T (2010) Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon Weather Rev 138(1):190–202. doi:10.1175/2009mwr3046.1

    Article  Google Scholar 

  • Getirana ACV, Espinoza JCV, Ronchail J, Rotunno Filho OC (2011) Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. J Hydrol 404(3–4):304–322. doi:10.1016/j.jhydrol.2011.04.037

    Article  Google Scholar 

  • Haddeland I, Matheussen BV, Lettenmaier DP (2002) Influence of spatial resolution on simulated streamflow in a macroscale hydrologic model. Water Resour Res 38 (7):29-21-29-10. 10.1029/2001wr000854

  • Hirabayashi Y, Kanae S, Motoya K, Masuda K, Döll P (2008) A 59-year (1948–2006) global meteorological forcing data set for land surface models. Part II: Global snowfall estimation. Hydrol Res Lett 2:65–69. doi:10.3178/hrl.2.65

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/jhm560.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36(17):L17808. doi:10.1029/2009gl040000

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631

    Article  Google Scholar 

  • Karam HN, Bras RL (2008) Estimates of net atmospheric moisture flux convergence over the amazon basin: a comparison of reanalysis products. J Hydrometeorol 9(5):1035–1047. doi:10.1175/2008jhm887.1

    Article  Google Scholar 

  • Ma L, Zhang T, Frauenfeld OW, Ye B, Yang D, Qin D (2009) Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J Geophys Res: Atmos 114(D9):D09105. doi:10.1029/2008jd011178

    Google Scholar 

  • Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk A 17(5):291–305. doi:10.1007/s00477-003-0151-7

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51. doi:10.1038/nature09364

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS, Sutera A (2010) Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrol Earth Syst Sci 14(10):1919–1930. doi:10.5194/hess-14-1919-2010

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J Clim 24(14):3624–3648. doi:10.1175/jcli-d-11-00015.1

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40. doi:10.1007/s00704-013-0860-x

    Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    Article  Google Scholar 

  • Sorooshian S, Hsu K-L, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046. doi:10.1175/1520-0477(2000)081<2035:eopsse>2.3.co;2

    Article  Google Scholar 

  • Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resour Res 45 (5):n/a-n/a. 10.1029/2008wr006892

  • Tyndall DP, Horel JD (2012) Impacts of mesonet observations on meteorological surface analyses. Weather Forecast 28(1):254–269. doi:10.1175/waf-d-12-00027.1

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Voisin N, Wood AW, Lettenmaier DP (2008) Evaluation of precipitation products for global hydrological prediction. J Hydrometeorol 9(3):388–407. doi:10.1175/2007jhm938.1

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Feddema JJ (1994) Estimating continental and terrestrial precipitation averages from rain-gauge networks. Int J Climatol 14(4):403–414. doi:10.1002/joc.3370140405

    Article  Google Scholar 

  • Xiao J, Zhuang Q, Liang E, Shao X, McGuire AD, Moody A, Kicklighter DW, Melillo JM (2009) Twentieth-century droughts and their impacts on terrestrial carbon cycling in china. Earth Interact 13(10):1–31. doi:10.1175/2009ei275.1

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558. doi:10.1175/1520-0477(1997)078<2539:gpayma>2.0.co;2

    Article  Google Scholar 

  • Yu R, Wei L, Xuehong Z, Yimin L, Yongqiang Y, Hailong L, Tianjun Z (2000) Climatic features related to Eastern China summer rainfalls in the NCAR CCM3. Adv Atmos Sci 17(4):503–518. doi:10.1007/s00376-000-0014-9

    Article  Google Scholar 

  • Yuan W, Liu S, Liu H, Randerson JT, Yu G, Tieszen LL (2010a) Impacts of precipitation seasonality and ecosystem types on evapotranspiration in the Yukon River Basin, Alaska. Water Resour Res 46(2):W02514. doi:10.1029/2009wr008119

    Google Scholar 

  • Yuan W, Liu S, Yu G, Bonnefond J-M, Chen J, Davis K, Desai AR, Goldstein AH, Gianelle D, Rossi F, Suyker AE, Verma SB (2010b) Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ 114(7):1416–1431. doi:10.1016/j.rse.2010.01.022

    Article  Google Scholar 

  • Yuan W, Liu S, Liang S, Tan Z, Liu H, Young C (2012) Estimations of evapotranspiration and water balance with uncertainty over the Yukon River Basin. Water Resour Manag 26(8):2147–2157. doi:10.1007/s11269-012-0007-3

    Article  Google Scholar 

  • Yuan W, Xu B, Chen Z, Xia J, Xu W, Chen Y, Wu X, Fu Y (2014) Validation of China-wide interpolated daily climate variables from 1960 to 2011. Theor Appl Climatol:1–12

  • Zhang K, Kimball JS, Mu Q, Jones LA, Goetz SJ, Running SW (2009) Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J Hydrol 379(1):92–110

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176. doi:10.1016/j.rse.2004.12.011

    Article  Google Scholar 

  • Zhao M, Running SW, Nemani RR (2006) Sensitivity of moderate resolution imaging spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res: Biogeosci 111(G1):G01002. doi:10.1029/2004jg000004

    Google Scholar 

  • Zhao T, Fu C, Ke Z, Guo W (2010) Global atmosphere reanalysis datasets: current status and recent advances. Adv Earth Sci 25:242–254

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Program of China (2012CB955501, 2012AA12A407, 2013AA122003), the National Natural Science Foundation of China (41201078), and Program for New Century Excellent Talents in University (NCET −12-0060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Xia, J., Yuan, W. et al. Assessment of multiple precipitation products over major river basins of China. Theor Appl Climatol 123, 11–22 (2016). https://doi.org/10.1007/s00704-014-1339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1339-0

Keywords

Navigation