Skip to main content
Log in

Exploring spatiotemporal patterns and physical controls of soil moisture at various spatial scales

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Soil moisture variability of various spatial scales is analyzed based on empirical orthogonal function (EOF) method using soil moisture datasets with various spatial resolutions: 1 km eco-hydrological model simulation, 0.25° passive microwave (Advanced Microwave Scanning Radiometer for the Earth Observing System, AMSR-E) dataset, and 0.5° land surface model simulation from Climate Predictor Center (CPC). All three datasets generate EOFs that explain similar variances with those generated from in situ observations from agro-meteorological network. Using AMSR-E product and eco-hydrological model simulation, it is found that the primary spatial pattern of soil moisture obtained from watershed scale has a strong connection to topographic attributes, followed by soil texture and rainfall variability, as suggested by the correlation between the primary EOF mode (EOF1) of soil moisture and landscape attributes. However, the EOF analysis of both AMSR-E and CPC datasets at regional scale reaches the conclusion that soil texture indices, such as sand and clay content, is of higher importance to soil moisture EOF1 spatial pattern (explaining 61 % variance) than topography is. Furthermore, correlation between soil moisture EOF1 and soil property is higher in spring than in autumn, which indicates that soil water-holding and drainage capabilities are more important under dry conditions. At national scale, the combined effects of topographic feature and soil property are clearly exhibited in EOF1. The study results reveal that different emphases should be placed on accurate acquisition of landscape attributes for soil moisture estimation according to various spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bai Y, Zhi X, Qi H, Zhang L (2010) Severe drought monitoring in south China based on the standardized precipitation index at different scales. Scientia Meteorologica Sinica 30(3):292–300 (in Chinese)

    Google Scholar 

  • Brocca L, Morbidelli R, Melone F, Moramarco T (2007) Soil moisture spatial variability in experimental areas of central Italy. J Hydrol 333(2–4):356–373

    Article  Google Scholar 

  • Brocca L, Melone F, Moramarco T, Wagner W, Naeimi V, Bartalis Z, Hasenauer S (2010) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Syst Sci 14(10):1881–1893

    Article  Google Scholar 

  • Busch FA, Niemann JD, Coleman M (2012) Evaluation of an empirical orthogonal function-based method to downscale soil moisture patterns based on topographical attributes. Hydrol Process 26(18):2696–2709. doi:10.1002/hyp.8363

    Article  Google Scholar 

  • Champagne C, Berg A, Belanger J, McNairn H, De Jeu R (2010) Evaluation of soil moisture derived from passive microwave remote sensing over agricultural sites in Canada using ground-based soil moisture monitoring networks. Int J Remote Sens 31(14):3669–3690

    Article  Google Scholar 

  • Chen J, Jonsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ 91(3–4):332–344

    Google Scholar 

  • Crow WT, Miralles DG, Cosh MH (2010) A quasi-global evaluation system for satellite-based surface soil moisture retrievals. IEEE Trans Geosci Remote Sens 48(6):2516–2527

    Article  Google Scholar 

  • de Jeu, RAM, Holmes TRH, and M Owe (2005) Determination of the effect of dew on passive microwave observations from space. In SPIE Proceedings of Remote Sensing for Agriculture, Ecosystems, and Hydrology VII, Vol. 5976, edited by M. Owe and G. D’Urso, 51–59. Bellingham,WA: SPIE.

  • Draper CS, Walker JP, Steinle PJ, de Jeu RAM, Holmes TRH (2009) An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens Environ 113(4):703–710

    Article  Google Scholar 

  • Du J, Jackson T, Bindlish R, Cosh M, Li L, Hornbuckle, B and Kabela E (2012) Effect of dew on aircraft-based passive microwave observations over an agricultural domain. J Appl Remote Sens 6(1): 063571.

    Google Scholar 

  • Green TR, Erskine RH (2004) Measurement, scaling, and topographic analyses of spatial crop yield and soil water content. Hydrol Process 18(8):1447–1465

    Article  Google Scholar 

  • Gruhier C, de Rosnay P, Hasenauer S, Holmes T, de Jeu R, Kerr Y, Mougin E, Njoku E, Timouk F, Wagner W, Zribi M (2010) Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site. Hydrol Earth Syst Sci 14(1):141–156. doi:10.5194/hess-14-141-2010

    Article  Google Scholar 

  • Hannachi A, Jolliffe I, Stephenson D (2007) Empirical orthogonal functions and related techniques in atmospheric science: A review. Int J Climatol 27(9):1119–1152. doi:10.1002/joc.1499

    Google Scholar 

  • Jackson TJ, Moy L (1999) Dew effects on passive microwave observations of land surfaces. Remote Sens Environ 70:129–137

    Article  Google Scholar 

  • Jawson SD, Niemann JD (2007) Spatial patterns from EOF analysis of soil moisture at a large scale and their dependence on soil, land-use, and topographic properties. Adv Water Resour 30(3):366–381

    Article  Google Scholar 

  • Jaynes D, Colvin TS, James TS, James DE (2003) Cluster analysis of spatiotemporal corn yield patterns in an Iowa field. Agron J 95(3):574

    Article  Google Scholar 

  • Joshi C, Mohanty BP (2010) Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resour Res 46(12), W12503. doi:10.1029/2010wr009152

    Google Scholar 

  • Korres W, Koyama CN, Fiener P, Schneider K (2010) Analysis of surface soil moisture patterns in agricultural landscapes using empirical orthogonal functions. Hydrol Earth Syst Sci 14(5):751–764. doi:10.5194/hess-14-751-2010

    Article  Google Scholar 

  • Koster RD, Mahanama SPP, Livneh B, Lettenmaier DP, Reichle RH (2010) Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat Geosci 3(9):613–616

    Article  Google Scholar 

  • Liu S, Mo X, Li H, Peng G, Robock A (2001) Spatial variation of soil moisture in China: geostatistical characterization. J Meteorol Soc Jpn 79(1B):555–574

    Article  Google Scholar 

  • Liu J, Liu M, Zhuang D, Zhang Z, Deng X (2003) Study on spatial pattern of land-use change in China during 1995–2000. Sci China Ser D 46(4):373–384. doi:10.1360/03yd9033

    Google Scholar 

  • Liu Y, de Jeu RAM, van Dijk AIJM, Owe M (2007) TRMM-TMI satellite observed soil moisture and vegetation density (1998–2005) show strong connection with El Niño in eastern Australia. Geophys Res Lett 34(15), L15401

    Article  Google Scholar 

  • Liu S, Mo X, Zhao W, Naeimi V, Dai D, Shu C, Mao L (2009) Temporal variation of soil moisture over the Wuding River Basin assessed with an eco-hydrological model, in-situ observations and remote sensing. Hydrol Earth Syst Sci 13(7):1375–1398

    Article  Google Scholar 

  • Liu Z, Xu Z, Yao Z, Huang H (2012) Comparison of surface variables from ERA and NCEP reanalysis with station data over eastern China. Theor Appl Climatol 107(3–4):611–621. doi:10.1007/s00704-011-0501-1

    Article  Google Scholar 

  • Mo X, Liu S (2001) Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agric For Meteorol 109(3):203–222

    Article  Google Scholar 

  • Mo X, Liu S, Lin Z, Zhao W (2004) Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J Hydrol 285(1–4):125–142

    Article  Google Scholar 

  • Mo X, Liu S, Lin Z, Xu Y, Xiang Y, McVicar T (2005) Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol Model 183(2–3):301–322

    Article  Google Scholar 

  • Owe M, De Jeu R, Holmes T (2008) Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res 113, F01002

    Google Scholar 

  • Perry MA, Niemann JD (2007) Analysis and estimation of soil moisture at the catchment scale using EOFs. J Hydrol 334(3–4):388–404

    Article  Google Scholar 

  • Qiu J, Mo X, Liu S, Lin Z, Yang L, Song X, Zhang G, Naeimi V, Wagner W (2013) Intercomparison of microwave remote-sensing soil moisture data sets based on distributed eco-hydrological model simulation and in situ measurements over the North China Plain. Int J Remote Sens 34(19):6587–6610. doi:10.1080/01431161.2013.788799

    Article  Google Scholar 

  • Ray RL, Jacobs JM, Cosh MH (2010) Landslide susceptibility mapping using downscaled AMSR-E soil moisture: a case study from Cleveland Corral, California, US. Remote Sens Environ 114(11):2624–2636

    Article  Google Scholar 

  • Rüdiger C, Calvet JC, Gruhier C, Holmes TRH, de Jeu RAM, Wagner W (2009) An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France. J Hydrometeorol 10(2):431–447

    Article  Google Scholar 

  • Savitzky A, Golay M (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chim 36(8):1627–1639

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A Simple Biosphere Model (SIB) for use within general circulation models. J Atmos Sci 43(6):505–531. doi:10.1175/1520-0469(1986)043<0505:asbmfu>2.0.co;2

    Article  Google Scholar 

  • van den Dool H, Huang J, Fan Y (2003) Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J Geophys Res 108(D16):8617. doi:10.1029/2002jd003114

    Article  Google Scholar 

  • Wagner W, Naeimi V, Scipal K, De Jeu R, Martínez-Fernández J (2007) Soil moisture from operational meteorological satellites. Hydrogeol J 15(1):121–131

    Article  Google Scholar 

  • Wang A, Lettenmaier DP, Sheffield J (2011) Soil moisture drought in China, 1950–2006. J Clim 24(13):3257–3271. doi:10.1175/2011jcli3733.1

    Article  Google Scholar 

  • Western A, Grayson R, Blöschl G, Willgoose G, McMahon T (1999) Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour Res 35(3):797–810

    Article  Google Scholar 

  • Yoo C, Kim S (2004) EOF analysis of surface soil moisture field variability. Adv Water Resour 27(8):831–842

    Article  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the Natural Science Foundation of China grant (41071024, 31171451), Key Project for the Strategic Science Plan in IGSNRR, CAS (2012ZD003), the Chinese Ministry of Science and Technology for “973” project (2010CB428404), and the open fund from Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Resources, Remote Sensing and Digital Agriculture (2011001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suxia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Mo, X., Liu, S. et al. Exploring spatiotemporal patterns and physical controls of soil moisture at various spatial scales. Theor Appl Climatol 118, 159–171 (2014). https://doi.org/10.1007/s00704-013-1050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1050-6

Keywords

Navigation