Skip to main content
Log in

Parameterisation of incoming longwave radiation over glacier surfaces in the semiarid Andes of Chile

Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A good understanding of radiation fluxes is important for calculating energy, and hence, mass exchange at glacier surfaces. This study evaluates incoming longwave radiation measured at two nearby glacier stations in the high Andes of the Norte Chico region of Chile. These data are the first published records of atmospheric longwave radiation measurements in this region. Nine previously published optimised parameterisations for clear sky emissivity all produced results with a root mean square error (RMSE) ~20 W m−2 and bias within ±5 W m−2, which is inline with findings from other regions. Six optimised parameterisations for incoming longwave in all sky conditions were trialled for application to this site, five of which performed comparably well with RMSE on daytime data <18 W m−2 and bias within ±6 W m−2 when applied to the optimisation site and RMSE <20 W m−2 and bias within ±10 W m−2 when applied to the validation site. The parameterisation proposed by Mölg et al. (J Glaciol 55:292-302, 2009) was selected for use in this region. Incorporating the proposed elevation modification into the equation reduced the bias in the modelled incoming longwave radiation for the validation site. It was found that applying the parameterisation optimised in the original work at Kilimanjaro produced good results at both the primary and validation site in this study, suggesting that this formulation may be robust for different high mountain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aase JK, Idso SB (1978) A comparison of two formula types for calculating long-wave radiation from the atmosphere. Water Resour Res 14(4):623–625

    Article  Google Scholar 

  • Alados I, Foyo-Moreno I, Alados-Arboledas L (2012) Estimation of downwelling longwave irradiance under all-sky conditions. Int J Climatol 32(5):781–793. doi:10.1002/joc.2307

    Article  Google Scholar 

  • Ambach W (1974) The influence of clouds on the net radiation balance of a snow surface with high albedo. J Glaciol 13:73–84

    Google Scholar 

  • Ångström A (1918) A study if the radiation of the atmosphere. Smithson Misc Collect 65:1–159

    Google Scholar 

  • Box JE, Anderson PS, van den Broeke MR (2004) Automatic weather stations on glaciers: lessons to be learned extended abstracts. In Automatic Weather Stations on Glaciers, Pontresina. pp 1-22

  • Brenning A (2005) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35°S). Permafrost Periglac 16(3):231–240. doi:10.1002/ppp.528

    Article  Google Scholar 

  • Brunt D (1932) Notes on radiation in the atmosphere. Q J R Meteorol Soc 58:389–420

    Article  Google Scholar 

  • Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11(5):742–744

    Article  Google Scholar 

  • Brutsaert WH (1982) Evaporation into the atmosphere: theory, history and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  • Campbell Scientific Inc (2011) Instruction manual: CNR 1 Net Radiometer Revision 5/11

  • Charlock T, Herman BM (1976) Discussion of the Elsasser formulation for infrared fluxes. J Appl Meteorol 15:657–661

    Article  Google Scholar 

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms, IHP-VII technical documents in hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris

  • Crawford TM, Duchon CE (1999) An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J Appl Meteorol 38(4):474–480

    Article  Google Scholar 

  • Duguay CR (1993) Radiation modelling in mountainous terrain review and status. Mt Res Dev 13:339–357

    Article  Google Scholar 

  • Dilley AC, O’Brien DM (1998) Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q J R Meteorol Soc 124A:1391–1401

    Google Scholar 

  • Fassnacht SR, Snelgrove KR, Soulis ED (2001) Daytime long-wave radiation approximation for physical hydrological modelling of snowmelt: a case study of southwestern Ontario. IAHS Publ 270:279–286

    Google Scholar 

  • Favier V, Wagnon P, Chazarin J, Maisincho L, Coudrain A (2004) One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15. Ecuadorian Andes J Geophys Res 109:D18105. doi:10.1029/2003JD004359

    Article  Google Scholar 

  • Flerchinger GN, Xaio W, Marks D, Sauer TJ, Yu Q (2009) Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour Res 45:W03423. doi:10.1029/2008WR007394

    Article  Google Scholar 

  • Gabathuler M, Marty CA, Hanselmann KW (2001) Parameterization of incoming longwave radiation in high-mountain environments. Phys Geogr 22(2):99–114

    Google Scholar 

  • Georges C, Kaser G (2002) Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site. J Geophys Res 107(D24):4775. doi:10.1029/2002JD002503

    Article  Google Scholar 

  • Granger RJ, Gray DM (1990) A net radiation model for calculating daily snowmelt in open environments. Nordic Hydrol 21(4–5):217–234

    Google Scholar 

  • Halldin S, Lindroth A (1992) Errors in net radiometry: comparison of six radiometer designs. J Atmos Ocean Technol 9(6):762–783

    Article  Google Scholar 

  • Hock R (2005) Glacier melt: a review of processes and their modelling. Prog Phys Geogr 29(3):362–391. doi:10.1191/0309133305pp453ra

    Article  Google Scholar 

  • Hoffman MJ, Fountain AG, Liston GE (2008) Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J Geophys Res 113(F04014). doi:10.1029/2008JF001029

  • Idso SB (1981) A set of equations for full spectrum and 8–14 μm and 10.5–12.5 μm thermal radiation from cloudless skies. Water Resour Res 17:295–304

    Article  Google Scholar 

  • Klok EJ, Oerlemans J (2004) Modelled climate sensitivity of the mass balance of Morteratschgletcher and its dependence on albedo parameterization. Int J Climatol 24:231–245

    Article  Google Scholar 

  • Kuhn M, Dreiseitl E, Hofinger S, Markl G, Span N, Kaser G (1999) Measurements and models of the mass balance of Hintereisferner. Geogr Ann A 81(4):659–670

    Article  Google Scholar 

  • Kull C, Grosjean M, Veit H (2002) Modeling modern and late Pleistocene glacio-climatological conditions in the north Chilean Andes (29–30°S). Clim Change 52:359–381

    Article  Google Scholar 

  • Lhomme JP, Vacher JJ, Rocheteau A (2007) Estimating downward long-wave radiation on the Andean Altiplano. Agric For Meteorol 145(3–4):139–148

    Article  Google Scholar 

  • Marks D, Dozier J (1979) A clear-sky longwave radiation model for remote alpine areas. Arch Met Geoph Biokl, Ser B 27:159–187

    Article  Google Scholar 

  • Marty C, Philipona R (2000) The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophys Res Lett 27(17):2649–2652

    Article  Google Scholar 

  • Marty C, Philipona R, Fröhlich C, Ohmura A (2002) Altitude dependence of surface radiation fluxes and cloud forcing in the alps: results from the alpine surface radiation budget network. Theor Appl Climatol 72(3–4):137–155

    Article  Google Scholar 

  • Maykut GA, Church PE (1973) Radiation climate of Barrow, Alaska, 1962–1966. J Appl Meteorol 12:620–628

    Article  Google Scholar 

  • Michel D, Philipona R, Ruckstuhl C, Vogt R, Vuilleumier L (2008) Performance and uncertainty of CNR1 net radiometers during a one-year field campaign. J Atmos Ocean Technol 25:442–451. doi:10.1175/2007JTECHA973.1

    Article  Google Scholar 

  • Mölg T, Hardy DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J Geophys Res 109(D16104). doi:10.1029/2003JD004338

  • Mölg T, Cullen N, Hardy DR, Kaser G, Klok L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int J Climatol 28:881–892. doi:10.1002/joc.1589

    Article  Google Scholar 

  • Mölg T, Cullen N, Kaser G (2009) Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass balance modelling. J Glaciol 55(190):292–302

    Article  Google Scholar 

  • Müller H (1985) On the radiation budget in the Alps. Int J Climatol 5(4):445–462

    Article  Google Scholar 

  • Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204

    Article  Google Scholar 

  • Nicholson L, Marín J, Lopez D, Rabatel A, Bown F, Rivera A (2010) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with central Chile. Ann Glaciol 50(53):111–118

    Article  Google Scholar 

  • Ohmura A (2001) Physical basis for the temperature-based melt-index method. J Appl Meteorol 40(4):753–761

    Article  Google Scholar 

  • Oke TJ (1987) Boundary layer climates. Methuen, London

    Google Scholar 

  • Philipona R, Dürr B, Marty C, Ohmura A, Wild M (2004) Radiative forcing—measured at Earth’s surface—corroborate the increasing greenhouse effect. J Geophys Res 31(N3):L03202

    Google Scholar 

  • Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151

    Article  Google Scholar 

  • Rabatel A, Castebrunet H, Favier V, Nicholson L, Kinnard C (2011) Glacier changes in the Pascua-Lama region, Chilean Andes (29° S): recent mass-balance and 50-year surface-area variations. Cryosphere 5:1029–1041

    Article  Google Scholar 

  • Satterland DR (1979) An improved equation for estimating long-wave radiation from the atmosphere. Water Resour Res 15(6):1649–1650

    Article  Google Scholar 

  • Sedlar J, Hock R (2009) Testing longwave radiation parameterisations under clear and overcast skies at Storglaciären, Sweden. Cryosphere 3(1):75–84

    Article  Google Scholar 

  • Sicart JE, Pomeroy JW, Essery RLH, Bewley D (2006) Incoming longwave radiation to melting snow: observations, sensitivity, and estimation in northern environments. Hydrol Process 20(17):3697–3708

    Article  Google Scholar 

  • Sicart JE, Hock R, Ribstein P, Chazarin JP (2010) Sky longwave radiation on tropical Andean glaciers: parameterisation and sensitivity to atmospheric variables. J Glaciol 56(199):854–860

    Article  Google Scholar 

  • Sonntag D (1990) Important new values of the physical constants of 1986, vapor pressure formulations based on the ITC-90, and psychrometer formulae. Z Meteorol 40:340–344

    Google Scholar 

  • Swinbank WC (1963) Long-wave radiation from clear skies. Q J R Meteorol Soc 89:339–348

    Article  Google Scholar 

  • van As D, van den Broeke MR, Reijmer CH, van de Wal RSW (2005) The summer surface energy balance of the high Antarctic Plateau. Bound-Lay Meteorol 115:289–317

    Article  Google Scholar 

  • van den Broeke MR, van As D, Reijmer CH, van de Wal RSW (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J Atmos Ocean Tech 21(9):1417–1431

    Article  Google Scholar 

  • van den Broeke M, Reijmer C, van As D, Boot W (2006) Daily cycle of the surface energy balance in Antarctica and the influence of clouds. Int J Climatol 26(12):1587–1605

    Article  Google Scholar 

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348

    Article  Google Scholar 

  • Yamanouchi T, Kawaguchi S (1984) Longwave radiation balance under a strong surface inversion in the Katabatic wind zone, Antarctica. J Geophys Res 89(D7):11771–11778

    Article  Google Scholar 

Download references

Acknowledgments

SM was supported by FONDECYT Postdoctoral grant no. 3110053. We also thank the Barrick Gold Corporation for logistical support of this study as part of a glacier monitoring project in the semiarid Andes and the glaciology group at CEAZA for their help with the installation of the AWS’s. We thank two anonymous reviewers for their constructive criticism which greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley MacDonell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonell, S., Nicholson, L. & Kinnard, C. Parameterisation of incoming longwave radiation over glacier surfaces in the semiarid Andes of Chile. Theor Appl Climatol 111, 513–528 (2013). https://doi.org/10.1007/s00704-012-0675-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0675-1

Keywords

Navigation