Skip to main content

Advertisement

Log in

Variability in aerosol optical properties and radiative forcing over Gorongosa (18.97oS, 34.35oE) in Mozambique

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This paper reports the observational results of aerosol optical, microphysical and radiative characteristics for the time measured over Gorongosa (18.97ºS, 34.35ºE, 30 m asl) in Mozambique using a ground-based AERONET sun-sky radiometer. In the present study, the data recorded during the period July–December, 2012 have been used and particular attention was paid to show how aerosol loading evolves during the biomass burning season (spring) including pre- and post-months. The results reveal that the monthly mean aerosol optical depth (AOD) at 500 nm was high (low) with 0.64 ± 0.34 (0.20 ± 0.06) in September (November), while the Ångström Exponent (AE) (α 440–870) decreased, except September (1.56 ± 0.26) due to increase in the fine-mode aerosol concentration produced from biomass burning. The volume size distribution (VSD) has bimodal lognormal structure and has fine-mode (coarse) maximum at a radius of 0.15 µm (3.0 µm) in September (December). The single scattering albedo (SSA) decreases with wavelength from July to October and almost stable in November and December. The imaginary (Im) refractive index (RI) showed a strong evidence of black carbon aerosol origin during the biomass burning months. Aerosol radiative forcing (ARF) computed from SBDART model shows large negative values at the surface (−89.22 W m−2) and at the top (−22.36 W m−2), with a higher value of atmospheric forcing (+66.87 W m−2) resulting in average tropospheric heating rate of 1.88 K day−1 for the study period. Further, the comparison shows good agreement between the ARFs at the top and bottom of the atmosphere derived from AERONET to SBDART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V, Griffith D (2014, In Press) Direct radiative forcing of urban aerosols over Pretoria (25.75ºS, 28.28ºE) using AERONET Sunphotometer data: first scientific results and environmental impact. J Environ Sci (in press)

  • Alam K, Trautmann T, Blaschke T (2011) Aerosol optical properties and radiative forcing over mega-city Karachi. Atmos Res 101:773–782

    Article  Google Scholar 

  • Alam K, Trautmann T, Blaschke T, Majid H (2012) Aerosol optical and radiative properties during summer and winter season over Lahore and Karachi. Atmos Environ 50:234–245

    Article  Google Scholar 

  • Andrews R, Sheridan P, Fiebig M, McComiskey A, Ogren J, Arnott P et al (2006) Comparison of methods for deriving aerosol asymmetry parameter. J Geophys Res 111(D5). doi:10.1029/2004JD005734

  • Ångström A (1961) Techniques of determining the turbidity of the atmosphere. Tellus 13:214–223

    Article  Google Scholar 

  • Archibald S, Staver AC, Levin SA (2012) Evolution of human driven fire regimes in Africa. Proc Natl Aca Sci 109(3):847–852

    Article  Google Scholar 

  • Arola A, Lindfors A, Natunen A, Lehtinen KEJ (2007) A case study on biomass burning aerosols: effects on aerosol optical and surface radiation levels. Atmos Chem Phys 7:4257–4266

    Article  Google Scholar 

  • Arola A, Schuster G, Myhre G, Kazadzis S, Dey S, Tripathi S (2011) Inferring absorbing organic carbon content from AERONET data. Atmos Chem Phys 11(1):215–225

    Article  Google Scholar 

  • Babu SS, Moorthy KK, Manchanda RK, Sinha PR, Satheesh SK, Prasad VD, Srinivasan S, Arunkumar VH (2011) Free tropospheric black carbon aerosol measurements using high altitude balloon: Do BC layers build ‘their own homes’ up in the atmosphere? Geophys Res Lett 38(L08803). doi:10.1029/2011GL046654

  • Badarinath KVS, Latha KM, Chand TRK, Gupta PK (2009) Impact of biomass burning on aerosol properties over tropical wet evergreen forests of Arunachal Pradesh, India. Atmos Res 91:87–93

    Article  Google Scholar 

  • Bi J, Huang J, Fu Q, Wang X, Shi J, Zhang W et al (2011) Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China. J Quant Spec Rad Trans 112(2):346–360

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, De Angelo BJ, Flanner MG, Ghan S, et al. (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118. doi:10.1002/jgrd.50171

  • Charlson RJ, Schwartz SE, Hales JH, Cess RD, Coakley JA Jr, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  Google Scholar 

  • D’Almeida GA, Koepke P, Shettle EP (1991) Atmospheric aerosols: Global climatology and radiative characteristics (studies in geophysical optics and remote sensing). A Deepak Publishing, Hampton

    Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html) NOAA Air Resources Laboratory, Silver Spring, MD, USA

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res 105:20673–20696

    Article  Google Scholar 

  • Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance measurements. J Geophys Res 105:9791–9806

    Article  Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD et al (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59(3):590–608

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT et al (1999) Wavelength dependence of the optical depth of biomass burning urban and desert dust aerosols. J Geophys Res 104:31333–31350. doi:10.1029/1999JD900923

    Article  Google Scholar 

  • Eck TF, Holben BN, Ward D, Mukelabai M, Dubovik O, Smirnov A et al (2003a) Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J Geophys Res 108(D13). doi:10.1029/2002JD002321

  • Eck TF, Holben BN, Reid J, O’Neill N, Schafer J, Dubovik O et al (2003b) High aerosol optical depth biomass burning events: a comparison of optical properties for different source regions. Geophys Res Lett 30(20). doi:10.1029/2003GL017861

  • Eck TF, Holben BN, Reid JS, Mukelabai MM, Piketh SJ, Torres O, Jethva HT et al (2013) A seasonal trend of single scattering albedo in southern African biomass-burning particles: implications for satellite products and estimates of emissions for the World’s largest biomass-burning source. J Geophys Res 118:6414–6432. doi:10.1002/jgrd.50500

    Google Scholar 

  • Gadhavi H, Jayaraman A (2004) Aerosol characteristics and aerosol radiative forcing over Maitri, Antarctica. Curr Sci 86:296–304

    Google Scholar 

  • Gadhavi H, Jayaraman A (2010) Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Anna Geophys 28:103–111

    Article  Google Scholar 

  • Ge JM, Su J, Ackerman TP, Fu Q, Huang JP, Shi JS (2010) Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China–US joint field experiment. J Geophys Res 115(D00k12). doi:10.1029/2009JD013263

  • Gupta P, Gadhavi H, Jayaraman A (2003) Aerosol optical depth variation observed using sun-photometer over Indore. Ind J Rad Spac Phys 32:229–237

    Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Amer Meteo Soc 79:831–844

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis J et al (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Rem Sens Environ 66(1):1–16

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Smirnov A, Sinyuk A, Schafer JS, et al. (2006) Aeronet’s Version 2.0 quality assurance criteria. Proc SPIE 6408(64080Q). doi:10.1117/12.70652

  • Jayaraman A, Lubin D, Ramachandran S, Ramanathan V, Woodbridge E, Collins WD, Zalpuri KS (1998) Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise. J Geophys Res 103:13827–13836

    Article  Google Scholar 

  • Jayaraman A, Gadhavi H, Ganguly D, Misra A, Ramachandran S, Rajesh TA (2006) Spatial variations in aerosol characteristics and regional radiative forcing over India: measurements and modelling of 2004 road campaign experiment. Atmos Environ 40:6504–6515

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W et al (1996) The NCEP/NCAR reanalysis 40-year project. Bull Amer Meteo Soc 77:437–471

    Article  Google Scholar 

  • Kim DOH, Sohn BJ, Nakajima T, Takamura T (2005) Aerosol radiative forcing over east Asia determined from ground-based solar radiation measurements. J Geophys Res 110(D10S22). doi:10.1029/2004JD004678

  • Koren I, Kaufman YJ, Remer LA, Martins JV (2004) Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303:1342–1345

    Article  Google Scholar 

  • Kumar KR, Narasimhulu K, Balakrishnaiah G, Reddy LSS, Gopal KR, Reddy RR, Satheesh SK, Moorthy KK, Babu SS (2010) A study on the variations of optical and physical properties of aerosols over a tropical semi-arid station during grassland fire. Atmos Res 95:77–87

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR, Adesina AJ (2013) Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect. Sci Tot Environ 461–462:397–408

    Article  Google Scholar 

  • Liou KN (2002) An Introduction to atmospheric radiation. Elsevier, New York, p 583

    Google Scholar 

  • Ogunjobi K, He Z, Simmer C (2008) Spectral aerosol optical properties from AERONET Sunphotometric measurements over West Africa. Atmos Res 88(2):89–107

    Article  Google Scholar 

  • Penner JE, Dickinson RE, O’Neill CA (1992) Effects of aerosol from biomass burning on the global radiation budget. Science 256:1432–1434

    Article  Google Scholar 

  • Queface AJ, Piketh SJ, Eck TF, Tsay SC, Mavume AF (2011) Climatology of aerosol optical properties in Southern Africa. Atmos Environ 45:2910–2921

    Article  Google Scholar 

  • Ramachandran S, Rajesh TA (2008) Asymmetry parameters in the lower troposphere derived from aircraft measurements of aerosol scattering coefficients over tropical India. J Geophys Res 113(D16). doi:10.1029/2008JD009795

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosol, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Ranjan RR, Joshi HP, Iyer KN (2007) Spectral variation of total column aerosol optical depth over Rajkot: a tropical semi-arid Indian station. Aero Air Qual Res 7:33–45

    Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Amer Met Soc 79:2101–2114

    Article  Google Scholar 

  • Roberts JM, Veres PR, Cochran AK, Warneke C, Burling IR, Yokelson RJ et al (2011) Isocyanic acid in the atmosphere and its possible link to smoke related health effects. Proc Natl Aca Sci 108(22):8966–8971

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci USA 98:5975–5980

    Article  Google Scholar 

  • Satheesh SK, Moorthy KK (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39:2089–2110

    Article  Google Scholar 

  • Shaw GE (1983) Sun photometry. Bull Amer Meteo Soc 64:4–10

    Article  Google Scholar 

  • Simrnov A, Holben BN, Dubovik O, O’Neill NT, Eck TF, Westphal DL et al (2002) Atmospheric aerosol optical properties in the Persian Gulf. J Atmos Sci 59(3):620–634

    Article  Google Scholar 

  • Sinha PR, Dumka UC, Manchanda RK, Kaskaoutis DG, Sreenivasan S, Moorthy KK, Babu SS (2013) Contrasting aerosol characteristics and radiative forcing over Hyderabad, India due to seasonal mesoscale and synoptic-scale processes. Quar J Roy Meteo Soc 139:434–450

    Article  Google Scholar 

  • Sivakumar V, Tesfaye M, Alemu W, Sharma A, Bollig C, Mengistu G (2010) Aerosol measurements over South Africa using satellite, sun-photometer and LIDAR. Adv Geosci 16:253–262

    Google Scholar 

  • Srivastava A, Tiwari S, Devara PCS, Bisht D, Srivatsava MK, Tripathi S et al (2011) Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Ann Geophys 29:789–804

    Article  Google Scholar 

  • Stamnes K, Tsay S, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2509

    Article  Google Scholar 

  • Suman MNS, Gadhavi H, Kiran VR, Jayaraman A, Rao SVB (2013) Role of coarse and fine mode aerosols in MODIS AOD retrieval: a case study. Atmos Meas Tech Diss 6:9109–9132

    Article  Google Scholar 

  • Sumit Kumar, Devara PCS, Sonbawne S, Saha S (2011) Sun-sky radiometer derived column integrated aerosol optical and physical properties over a tropical urban station during 2004–2009. J Geophys Res 116(D10201). doi:10.1029/2010JD014944

  • Tesfaye M, Sivakumar V, Botai J, Tsidu GM (2011) Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res 116(D20216). doi:10.1029/2011JD16023

Download references

Acknowledgments

The authors sincerely thank UKZN, South Africa and NUIST, China for providing enabling environment and infrastructure support to carry out the present work. This work was partly supported by the National Research Foundation (NRF–South Africa) bi-lateral research grant (UID: 78682). Authors are indebted to the AERONET team of NASA, USA for their efforts in making the data available online. We gratefully acknowledge Prof. Brent N. Holben, PI and Dr. Marc Stalmans, site manager of Gorongosa site and their staff effort in establishing and maintaining AERONET site related to this investigation. One of the authors KRK expresses profound gratitude to Yan Yin, Diao Yiwei, Na Kang, Xingna Yu and Liang Xuewei for their support and cooperation. The authors would like to thank the editor and the two anonymous reviewers for their insightful comments and constructive suggestions which in turn helped to improve the clarity and scientific content of the original paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Raghavendra Kumar.

Additional information

Responsible Editor: S. T. Castelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesina, A.J., Kumar, K.R. & Sivakumar, V. Variability in aerosol optical properties and radiative forcing over Gorongosa (18.97oS, 34.35oE) in Mozambique. Meteorol Atmos Phys 127, 217–228 (2015). https://doi.org/10.1007/s00703-014-0352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-014-0352-2

Keywords

Navigation