Skip to main content
Log in

Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

For the first time, unmanned aerial system measurements collected by the small unmanned meteorological observer (SUMO) are used to evaluate atmospheric boundary layer (ABL) parameterization schemes embedded in the Advanced Weather Research and Forecasting model (AR-WRF). Observation sites were located in the vicinity of the almost idealized shaped mountain Hofsjökull, Central Iceland. SUMO profiles provided temperature, relative humidity and wind data to maximum heights of 3 km above ground. Two cases are investigated, one with calm wind conditions and development of a convective ABL and one with moderate winds and gravity waves over Hofsjökull. For the high-resolution simulation with AR-WRF, three two-way nested domains are chosen with a grid size of 9, 3 and 1 km. During its first meteorological test, SUMO has proved its great value for the investigation of the diurnal evolution of the ABL and the identification of mesoscale features residing above the ABL, such as subsidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ágústsson H, Ólafsson H (2007) Simulating a severe windstorm in complex terrain. Meteorol Z 16(1):111–122

    Article  Google Scholar 

  • Ágústsson H, Cuxart J, Mira A, Ólafsson H (2007) Observations and simulation of katabatic flows during a heatwave in Iceland. Meteorol Z 16(1):99–110

    Article  Google Scholar 

  • Ahmadov R, Gerbig C, Kretschmer R, Koerner S, Neininger B, Dolman A, Sarrat C (2007) Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere–biosphere model. J Geophys Res Atmos 112(D22):14

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • Egger J, Bajrachaya S, Heinrich R, Kolb P, Lämmlein S, Mech M, Reuder J, Schäper W, Shakya P, Schween J, Wendt H (2002) Diurnal winds in the Himalayan Kali Gandaki Valley. Part III: remotely piloted aircraft soundings. Mon Weather Rev 130:2042–2058

    Article  Google Scholar 

  • Garratt J (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Hong S, Kim S (2007) Stable boundary layer mixing in a vertical diffusion scheme. The Korea Meteorological Society, Fall conference, Seoul, Korea, Oct 25–26

  • Hong S, Pan H (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124(10):2322–2339

    Article  Google Scholar 

  • Hong S, Dudhia J, Chen S (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120

    Article  Google Scholar 

  • Hong S, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  • Holland G, Webster P, Curry J, Tyrell G, Gauntlett D, Brett G, Becker J, Hoag R, Vaglienti W (2001) The Aerosonde robotic aircraft: a new paradigm for environmental observations. Bull Am Meteorol Soc 82(5):889–901

    Article  Google Scholar 

  • Janjic Z (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118(7):1429–1443

    Article  Google Scholar 

  • Janjic Z (1996) The surface layer in the NCEP eta model. 11th conference on numerical weather prediction, American Meteorological Society, pp 354–355

  • Janjic Z (2002) Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP meso models. NCEP Office Note No. 437, 61 p

  • Jonassen M (2008) The small unmanned meteorological observer (SUMO)—characterization and test of a new measurement system for atmospheric boundary layer research. Master’s thesis, Geophysical Institute, University of Bergen

  • Konrad T, Hill M, Rowland J, Meyer J (1970) A small, radio-controlled aircraft as a platform for meteorological sensors. Appl Phys Lab Tech Digest 10:11–19

    Google Scholar 

  • Ma S, Chen H, Wang G, Pan Y, Li Q (2004) A miniature robotic plane meteorological sounding system. Adv Atmos Sci 21(6):890–896

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,682

    Article  Google Scholar 

  • Pleim J (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Climatol 46(9):1383–1395

    Article  Google Scholar 

  • Reuder J, Ablinger M, Águstsson H, Brisset P, Brynjólfsson S, Garhammer M, Johannesson T, Jonassen M, Kühnel R, Lämmlein S, de Lange T, Lindenberg C, Malardel S, Mayer S, Müller M, Ólafsson H, Rögnvaldsson O, Schäper W, Spengler T, Zängl G, Egger J (2009a) FLOHOF 2007: an overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland. Meteorol Atmos Phys (this issue)

  • Reuder J, Brisset P, Jonassen M, Müller M, Mayer S (2009b) The small unmanned meteorological observer SUMO: a new tool for atmospheric boundary layer research. Meteorol Z 18(2):141–147

    Article  Google Scholar 

  • Sandvik A, Furevik B (2002) Case study of a coastal jet at Spitsbergen—comparison of SAR and model estimated wind. Mon Weather Rev 130:1040–1051

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2005) A description of the advanced research WRF version 2. NCAR Tech Notes 468+ STR

  • Spiess T, Bange J, Buschmann M, Vörsmann P (2007) First application of the meteorological Mini-UAV M2AV. Meteorol Z 16(2):159–169

    Article  Google Scholar 

  • Steeneveld G, Mauritsen T, de Bruijn E, Vilà-Guerau de Arellano J, Svensson G, Holtslag A (2008) Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J Appl Meteorol Climatol 47(3):869–887

    Article  Google Scholar 

  • Stensrud D (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

  • Teixeira J, Stevens B, Bretherton C, Cederwall R, Doyle J, Golaz J, Holtslag A, Klein S, Lundquist J, Randall D, Siebesma A, Soares P (2008) Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Am Meteorol Soc 89(4):453–458

    Article  Google Scholar 

  • Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound Layer Meteorol 37:129–148

    Article  Google Scholar 

Download references

Acknowledgments

Supercomputing resources, on a Cray XT4 computer at Parallab at the University of Bergen, have been made available by the Norwegian Research Council. The observational data used in this study were collected as part of the field campaign FLOHOF. The authors wish to acknowledge all participants of FLOHOF, especially Martin Müller, Pascal Brisset and Christian Lindenberg. The improved landuse data set has been kindly provided by Reiknistofa i veðurfræði (Icelandic Institute for Meteorological Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, S., Sandvik, A., Jonassen, M.O. et al. Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models. Meteorol Atmos Phys 116, 15–26 (2012). https://doi.org/10.1007/s00703-010-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-010-0063-2

Keywords

Navigation