Skip to main content
Log in

Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of one session of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left dorsal premotor cortex (PMd) and left dorsolateral prefrontal cortex (DLPFC) on choice reaction time in a noise-compatibility task, and cognitive functions in patients with Parkinson’s disease (PD). Clinical motor symptoms of PD were assessed as well. Ten patients with PD entered a randomized, placebo-controlled study with a crossover design. Each patient received 10 Hz stimulation over the left PMd and DLPFC (active stimulation sites) and the occipital cortex (OCC; a control stimulation site) in the OFF motor state, i.e. at least after 12 h of dopaminergic drugs withdrawal. Frameless stereotaxy was used to target the optimal position of the coil. For the evaluation of reaction time, we used a noise-compatibility paradigm. A short battery of neuropsychological tests was performed to evaluate executive functions, working memory, and psychomotor speed. Clinical assessment included a clinical motor evaluation using part III of the Unified Parkinson’s Disease Rating Scale. Statistical analysis revealed no significant effect of rTMS applied over the left PMd and/or DLPFC in patients with PD in any of the measured parameters. In this study, we did not observe any effect of one session of high frequency rTMS applied over the left PMd and/or DLPFC on choice reaction time in a noise-compatibility task, cognitive functions, or motor features in patients with PD. rTMS applied over all three stimulated areas was well tolerated and safe in terms of the cognitive and motor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (are 6) in the rhesus monkey. J Comp Neurol 256:211–228

    Article  PubMed  CAS  Google Scholar 

  • Barrett J, Della-Maggiore V, Chouinard PA, Paus T (2004) Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioural and brain imaging studies. Neuropsychopharmacology 29:1172–1189

    Article  PubMed  Google Scholar 

  • Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228

    Article  PubMed  CAS  Google Scholar 

  • Bäumer T, Hidding U, Hamel W, Buhmann C, Moll CK, Gerloff C, Orth M, Siebner HR, Münchau A (2009) Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson’s disease. Mov Disord 24(5):672–676

    Google Scholar 

  • Bermpohl F, Fregni F, Boggio PS, Thut G, Northoff G, Otachi PT, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) Left prefrontal repetitive transcranial magnetic stimulation impairs performance in affective go/no-go task. Neuroreport 16:615–619

    Article  PubMed  Google Scholar 

  • Boggio PS, Fregni F, Bermpohl F, Mansur CG, Rosa M, Rumi DO, Barbosa ER, Odebrecht Rosa M, Pascual-Leone A, Rigonatti SP, Marcolin MA, Araujo Silva MT (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20:1178–1184

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111:323–345

    Article  PubMed  Google Scholar 

  • Buhmann C, Gorsler A, Bäumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner HR, Münchau A (2004) Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain 127:2732–2746

    Article  PubMed  CAS  Google Scholar 

  • Cappa SF, Sandrini M, Rossinin PM, Sosta K, Minuissi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723

    PubMed  CAS  Google Scholar 

  • Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083

    Article  PubMed  Google Scholar 

  • Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. J Int Neuropsychol Soc 9:419–428

    Article  PubMed  Google Scholar 

  • Cropley VL, Fujita M, Innis RB, Nathan PJ (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59(10):898–907

    Article  PubMed  CAS  Google Scholar 

  • del Olmo MF, Bello O, Cudeiro J (2007) Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 118:131–139

    Article  PubMed  Google Scholar 

  • Dubois B, Anrade K, Levy R (2008) Executive dysfunction and neurocognitive testing. In: Duyckaerts C, Litvan I (eds) Dementias: handbook of clinical neurology (Series Editors: Aminoff MJ, Boller F, Swaab DF). Elsevier, Amsterdam, pp 35–52

  • Eimer M, Hommel B, Prinz W (1995) S-R compatibility and response selection. Acta Psychol 90:301–313

    Article  Google Scholar 

  • Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function—systematic review of controlled clinical trials. Mov Disord 24(3):357–363

    Article  PubMed  Google Scholar 

  • Epstein CM, Evatt ML, Funk A, Girard-Siqueira L, Lupei N, Slaughter L, Athar S, Green J, McDonald W, DeLong MR (2007) An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 118:2189–2194

    Article  PubMed  Google Scholar 

  • Evers S, Bockermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 17:2915–2918

    Article  Google Scholar 

  • Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    PubMed  CAS  Google Scholar 

  • Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurosurg Psychiatry 75:71–1174

    Article  Google Scholar 

  • Frith D, Friston KJ, Liddle P, Frackowiak RSJ (1991) A PET study of word finding. Neuropsychologie 29:1137–1148

    Article  CAS  Google Scholar 

  • Gerton BK, Brown TT, Meyer-Lindenberg A, Kohn P, Holt JL, Olsen RK, Berman KF (2004) Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 42:1781–1787

    Article  PubMed  Google Scholar 

  • Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    Article  PubMed  CAS  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) Frontal cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 2:299–321

    Article  Google Scholar 

  • Halsband U, Passingham RE (1985) Premotor cortex and the conditions for movement in monkey (Macaca fascicularis). Behav Brain Res 18:269–277

    Article  PubMed  CAS  Google Scholar 

  • Halstead WC (1947) Brain and intelligence: a quantitative study of the frontal lobes. University of Chicago Press, Chicago

    Google Scholar 

  • Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res 54:73–84

    Article  PubMed  Google Scholar 

  • Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Yutaka, Oda M, Ohta K, Yamada Y, Tamura Mamoru (2000) Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Brain Res Cogn Brain Res 9:339–342

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Woods RP, Mazziotta JC (1998) Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain 121:2135–2143

    Article  PubMed  Google Scholar 

  • Jahanshahi M (2005) Other cognitive functions. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 281–302

    Google Scholar 

  • Jahanshahi M, Dirnberger G, Fulle R, Firth CD (1997) The functional anatomy of random number generation studied with PET. J Cereb Blood Flow Metab 17(1):S643

    Google Scholar 

  • Jahanshahi M, Profice P, Brown RG, Mike C, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121:1533–1544

    Article  PubMed  Google Scholar 

  • Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP (2002) Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2:1

    Google Scholar 

  • Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625

    Article  PubMed  CAS  Google Scholar 

  • Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, Kessler J, Sturm V, Heiss WD, Hilker R (2009) Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology 72:42–49

    Article  PubMed  CAS  Google Scholar 

  • Kulisevsky J, Avila A, Barbano M, Antonijoan R, Berthier M, Gironelli A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 119:2121–2132

    Article  PubMed  Google Scholar 

  • Liu X, Banich MT, Jacobson BL, Tanabe JL (2006) Functional dissociation of attentional selection within PFC: response and non-response related aspects of attentional selection as ascertained by fMRI. Cereb Cortex 16:827–834

    Article  PubMed  Google Scholar 

  • Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M (2006) Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 12:325–331

    Article  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140

    Article  PubMed  CAS  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Larson JM, Chun MM, Shima D (2006) Response-specific sources of dual-task interference in human pre-motor cortex. Psychol Res 70:436–447

    Article  PubMed  CAS  Google Scholar 

  • Milham MP, Banich MT (2005) Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Hum Brain Mapp 25:328–335

    Article  PubMed  Google Scholar 

  • Milham MP, Banich MT, Barad V (2003) Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: an event-related fMRI study of the Stroop task. Brain Res Cogn Brain Res 17:212–222

    Article  PubMed  Google Scholar 

  • Montgomery SA, Asberg MA (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389

    Article  PubMed  CAS  Google Scholar 

  • Moser DJ, Jorge RE, Manes F, Paradiso S, Benjamin BS, Robinson RG (2002) Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology 58:1288–1290

    PubMed  CAS  Google Scholar 

  • Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Valls-Solé J, Brasil-Neto JP, Wassermann EM, Cohen LG et al (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M (1994) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898

    PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37:207–217

    Article  PubMed  CAS  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362(6418):342–345

    Article  PubMed  CAS  Google Scholar 

  • Paus T (1998) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224

    Article  Google Scholar 

  • Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method of studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory task. Proc Natl Acad Sci USA 90:878–882

    Article  PubMed  CAS  Google Scholar 

  • Praamstra P, Stegman DF, Cools AR, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease. Brain 121:167–177

    Article  PubMed  Google Scholar 

  • Praamstra P, Kleine B, Schnitzler A (1999) Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. Neuroreport 10:3671–3674

    Article  PubMed  CAS  Google Scholar 

  • Rektorova I, Megova S, Bares M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–161

    Article  PubMed  Google Scholar 

  • Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I (2007) Repetitive transcranial stimulation for freezing of gait in Parkinson’s disease. Mov Disord 22:1518–1519

    Article  PubMed  Google Scholar 

  • Ridderinkhof KR (2002) Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford

  • Rushworth MF, Johansen-Berg H, Gobel SM, Delvin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20:89–100

    Article  Google Scholar 

  • Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE et al (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study Brain 120:963–976

    Google Scholar 

  • Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movement: a study using transcranial magnetic stimulation. Brain 121:785–799

    Article  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  CAS  Google Scholar 

  • Siebner HR (2005) Treatment of Movement Disorders. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Siebner HR, Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B (2000) Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 178:91–94

    Article  PubMed  CAS  Google Scholar 

  • Siebner HR, Loeer C, Mentschel C, Weindl D, Conrad B (2002) Repetitive transcranial magnetic stimulation in Parkinson’s disease and focal dystonia. Clin Neurophysiol Suppl 54:399–409

    Article  Google Scholar 

  • Silberman CD, Laks J, Capitão CF, Rodrigues CS, Moreira I, Engelhardt E (2006) Recognizing depression in patients with Parkinson’s disease: accuracy and specificity of two depression rating scale. Arq Neuropsiquiatr 64:407–411

    PubMed  Google Scholar 

  • Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95:876–882

    Article  PubMed  CAS  Google Scholar 

  • Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269

    Article  PubMed  CAS  Google Scholar 

  • Speer AM, Repella JD, Figueras S, Demian NK, Kimbrell TA, Wasserman EM, Post RM (2001) Lack of adverse cognitive effects of 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17:259–263

    Article  PubMed  CAS  Google Scholar 

  • Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:1–4

    Google Scholar 

  • Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370

    Article  PubMed  Google Scholar 

  • Terao Y, Furubayashi T, Okabe S, Mochizuki H, Arai N, Kobayashi S, Ugawa Y (2007) Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation. J Cogn Neurosci 19:1556–1573

    Article  PubMed  Google Scholar 

  • Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209

    Article  PubMed  CAS  Google Scholar 

  • Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK (1999) Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry 45:1440–1446

    Article  PubMed  CAS  Google Scholar 

  • Wechsler D (1975) Wechsler memory scale. Psychological Corporation, New York

    Google Scholar 

  • Wessel K, Zeffiro T, Toro C, Hallett M (1997) Self-paced versus metronome-paced finger movements. A positron emission tomography study. J Neuroimaging 7:145–151

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by research program of the Ministry of Education of the Czech Republic MSM 0021622404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvie Sedláčková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedláčková, S., Rektorová, I., Srovnalová, H. et al. Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease. J Neural Transm 116, 1093–1101 (2009). https://doi.org/10.1007/s00702-009-0259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0259-0

Keywords

Navigation