Article

Journal of Neural Transmission

, Volume 114, Issue 2, pp 195-203

Postnatal iron overload destroys NA-DA functional interactions

  • A. FredrikssonAffiliated withDepartment of Neuroscience, Psychiatry Ulleråker, University of Uppsala
  • , T. ArcherAffiliated withDepartment of Psychology, University of GöteborgUniversity of Kalmar

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary.

C57/BL6 mice were administered either postnatal iron (Fe2+ 7.5 mg/kg, on postnatal days 10–12) or vehicle, followed by administration of either DSP4 (50 mg/kg, s.c., 30 min after injection of zimeldine, 20 mg/kg, s.c.) or vehicle (saline) at 63 days of age. Three weeks later, iron/vehicle treated, DSP4/vehicle treated mice were injected with either a low dose of MPTP (2 × 20 mg/kg, with a 24-hr interval between injections) or vehicle. Behaviour testing took place a further three weeks (spontaneous behaviour and L-Dopa induced) and two weeks (clonidine-L-Dopa induced) later. Postnatal iron administration exacerbated the bradykinesia induced by MPTP and virtually abolished all spontaneous motor activity in NA-denervated mice that were MPTP-treated. Postnatal iron administration reduced markedly the restoration of motor activity by suprathreshold L-Dopa (20 mg/kg) following a 60-min habituation to the test chambers. Pretreatment with DSP4 effectively eliminated the restorative effect of L-Dopa in the MPTP mice. The synergistic effects of co-administration of clinidine (1 mg/kg) with a subthreshold dose of L-Dopa (5 mg/kg) in elevating the motor activity of MPTP mice were reduced markedly by postnatal iron administration, as well as by pretreatment with DSP4. NA-denervation by DSP4, after postnatal iron treatment, totally abolished the activity-elevating effects of the α-adrenoceptor agonist + DA-precursor combination in MPTP mice, and virtually eliminated these effects in saline (non-MPTP) mice.

Postnatal iron administration caused enduring higher levels of total iron content in all the groups with an increased level in mice treated with DSP4 followed by MPTP. These divergent findings confirm the direct influence of NA innervation upon dopaminergic functional expression and indicate a permanent vulnerability both in the noradrenergic and dopaminergic pathways following the postnatal infliction of an iron overload.

Keywords: Postnatal iron, DSP4, MPTP, vehicle, motor deficits, locomotion, rearing, total activity, suprathreshold L-Dopa, restoration, clonidine, subthreshold L-Dopa, denervation, DA, NA, C57/BL6 mice, PD