Skip to main content
Log in

High order parameter-robust numerical method for time dependent singularly perturbed reaction–diffusion problems

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We introduce a high order parameter-robust numerical method to solve a Dirichlet problem for one-dimensional time dependent singularly perturbed reaction-diffusion equation. A small parameter ε is multiplied with the second order spatial derivative in the equation. The parabolic boundary layers appear in the solution of the problem as the perturbation parameter ε tends to zero. To obtain the approximate solution of the problem we construct a numerical method by combining the Crank–Nicolson method on an uniform mesh in time direction, together with a hybrid scheme which is a suitable combination of a fourth order compact difference scheme and the standard central difference scheme on a generalized Shishkin mesh in spatial direction. We prove that the resulting method is parameter-robust or ε-uniform in the sense that its numerical solution converges to the exact solution uniformly well with respect to the singular perturbation parameter ε. More specifically, we prove that the numerical method is uniformly convergent of second order in time and almost fourth order in spatial variable, if the discretization parameters satisfy a non-restrictive relation. Numerical experiments are presented to validate the theoretical results and also indicate that the relation between the discretization parameters is not necessary in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhvalov NS (1969) Towards optimization of methods for solving boundary value problems in the presence of a boundary layer. Zh Vychisl Mat Mat Fiz 9: 841–859

    MATH  Google Scholar 

  2. Bujanda B, Clavero C, Gracia JL, Jorge JC (2007) A high order uniformly convergent alternating direction scheme for time dependent reaction diffusion problems. Numer Math 107: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  3. Clavero C, Gracia JL (2005) High order methods for elliptic and time dependent reaction diffusion singularly perturbed problems. Appl Math Comp 168(2): 1109–1127

    Article  MATH  MathSciNet  Google Scholar 

  4. Clavero C, Gracia JL, Jorge JC (2005) High order numerical methods for one dimensional parabolic singulary perturbed problem with regular layers. Numer Meth PDEs 21: 149–169

    MATH  MathSciNet  Google Scholar 

  5. Doolan EP, Miller JJH, Schilders WHA (1980) Uniform numerical methods for problems with intial and boundary layers. Boole Press, Dublin

    Google Scholar 

  6. Farrell PA, Hegarty AF, Miller JJH, O’Riordan E, Shishkin GI (2000) Robust computational techniques for boundary layers. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  7. Hindmarsh AC, Gresho PM, Griffiths DF (1984) The stability of explicit euler time-integration for certain finite difference approximations of the multidimensional advection–diffusion equation. Int J Numer Meth Fluids 4(9): 853–897

    Article  MATH  Google Scholar 

  8. Hemker PW, Shishkin GI, Shishkina LP (2000) ε-uniform schemes with high order time accuracy for parabolic singular perturbation problems. IMA J Numer Anal 20: 99–121

    Article  MATH  MathSciNet  Google Scholar 

  9. Ladyzhenskaya OA, Solonnikov VA, Ural’tseva NN (1968) Linear and quasilinear equation of parabolic type. Translations of Mathematical Monographs. American Mathematical Society, USA

    Google Scholar 

  10. Linss T, Madden N (2007) Parameter uniform approximations for time-dependent reaction–diffusion problems. Numer Meth PDEs 23(6): 1290–1300

    MATH  MathSciNet  Google Scholar 

  11. Linss T (2001) The necessity of Shishkin type decompositions. Appl Math Lett 14: 891–896

    Article  MATH  MathSciNet  Google Scholar 

  12. Linss T, Roos HG, Vulanović R (2000) Uniform pointwise convergence on Shishkin-type meshes for quasilinear convection–diffusion problems. SIAM J Numer Anal 38: 897–912

    Article  MATH  MathSciNet  Google Scholar 

  13. Lunardi A (1995) Analytic semigroups and optimal regularity in parabolic problems. Progress in nonlinear differential equations and their applications, vol 16. Birkhäuser, Basel

    Google Scholar 

  14. Miller JJH, O’Riordan E, Shishkin GI, Shishkina LP (1998) Fitted mesh methods for problems with parabolic boundary layers. Math Proc R Irish Acad 98A(2): 173–190

    MATH  MathSciNet  Google Scholar 

  15. Miller JJH, O’Riordan E, Shishkin GI (1996) Fitted numerical methods for singular perturbation problems: Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific Publishing, River Edge

    MATH  Google Scholar 

  16. Palencia C (1993) A stability result for sectorial operator in Banach spaces. SIAM J Numer Anal 30: 1373–1384

    Article  MATH  MathSciNet  Google Scholar 

  17. Roos HG, Stynes M, Tobiska L (1996) Numerical methods for singularly perturbed differential equations. Springer, Berlin

    MATH  Google Scholar 

  18. Roos HG, Linss T (1999) Sufficient conditions for uniform convergence on layer adpated grids. Computing 63: 27–45

    Article  MATH  MathSciNet  Google Scholar 

  19. Shishkin GI (1989) Approximation of solutions of singularly perturbed boundary value problems with a parabolic boundary layers. USSR Comput Maths Math Phys 29(4): 1–10

    Article  MATH  MathSciNet  Google Scholar 

  20. Shishkin GI (1988) A difference scheme for a singularly perturbed parabolic equation with a discontinous boundary condition. Zh Vychisl Mat i Mat Fiz 28: 1679–1692

    MathSciNet  Google Scholar 

  21. Vulanović R (2001) A priori meshes for singularly perturbed quasilinear two point boundary value problems. IMA J Numer Anal 21: 349–366

    Article  MATH  MathSciNet  Google Scholar 

  22. Vulanović R (2001) A high order scheme for quasilinear boundary vale problems with two small parameters. Computing 67: 287–303

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chandra Sekhara Rao.

Additional information

Communicated by Xiaojun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Chandra Sekhara Rao, S. High order parameter-robust numerical method for time dependent singularly perturbed reaction–diffusion problems. Computing 90, 15–38 (2010). https://doi.org/10.1007/s00607-010-0104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0104-1

Keywords

Mathematics Subject Classification (2000)

Navigation