Skip to main content
Log in

The first complete plastome sequence of the basal asterid family Styracaceae (Ericales) reveals a large inversion

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plastome sequences are rich sources of information for resolving difficult phylogenetic relationships and provide genomic data for conservation studies. Here, the complete plastome sequence of Alniphyllum eberhardtii Guillaumin is reported, representing the first plastome of the basal asterid family Styracaceae (Ericales). The plastome is 155,384 bp in length and contains 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes, totaling 113 unique genes with 19 genes in the inverted repeat region. Unusual features of the plastome include the presence a large 20-kb inversion in the Large Single-Copy region, the pseudogenization of the accD gene, and the loss of the second intron from clpP. The 20-kb inversion includes 14 genes and has not been previously reported in other Ericales plastomes. Thirty-nine plastid simple sequence repeats (SSRs) that may provide genetic resources for the conservation of this economically import timber plant are characterized. Phylogenetic results inferred from ML and MP analyses of 66 plastid genes and 26 taxa reveal that the Styracaceae are sister to a clade including Actinidiaceae and Ericaceae and suggest that complete plastomes are likely to be very helpful in resolving the basal relationships among Ericales families, which have resisted resolution in smaller phylogenetic data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard 85:531–553

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi:10.1111/j.1095-8339.2009.00996.x

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. doi:10.1111/boj.12385

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215:403–410. doi:10.1006/jmbi.1990.9999

    Article  CAS  PubMed  Google Scholar 

  • Anderberg AA, Rydin C, Källersjö M (2002) Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. Amer J Bot 89:677–687

    Article  CAS  Google Scholar 

  • Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, Kallersjo M, Barkhordarian E (2002) Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molec Phylogen Evol 24:274–301. doi:10.1016/s1055-7903(02)00240-3

    Article  CAS  Google Scholar 

  • Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15:5958–5964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molec Biol Evol 23:2175–2190. doi:10.1093/molbev/msl089

    Article  CAS  PubMed  Google Scholar 

  • Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429. doi:10.1007/s002940050225

    Article  CAS  PubMed  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89:7722–7726. doi:10.1073/pnas.89.16.7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Molec Phylogen Evol 5:429–438. doi:10.1006/mpev.1996.0038

    Article  CAS  Google Scholar 

  • Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, Zalapa JE (2013) Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes 9:489–498. doi:10.1007/s11295-012-0573-9

    Article  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucl Acids Res 32:W273–W279. doi:10.1093/nar/gkh458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsch PW, Morton CM, Chen T, Meldrum C (2001) Phylogeny and biogeography of the Styracaceae. Int J Pl Sci 162:S95–S116. doi:10.1086/323418

    Article  Google Scholar 

  • Gao L, Su YJ, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93. doi:10.1111/j.1759-6831.2010.00071.x

    Article  Google Scholar 

  • Geuten K, Smets E, Schols P, Yuan YM, Janssens S, Kupfer P, Pyck N (2004) Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. Molec Phylogen Evol 31:711–729. doi:10.1016/j.ympev.2003.09.014

    Article  CAS  Google Scholar 

  • Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in poaceae. J Molec Evol 70:149–166. doi:10.1007/s00239-009-9317-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachtel W, Neuss A, Vomstein J (1991) A chloroplast DNA inversion marks an evolutionary split in the genus Oenothera. Evolution 45:1050–1052. doi:10.2307/2409709

    Article  Google Scholar 

  • Hoot SB, Palmer JD (1994) Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Molec Evol 38:274–281

    Article  CAS  PubMed  Google Scholar 

  • Hupfer H, Swiatek M, Hornung S, Herrmann RG, Maier RM, Chiu WL, Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Molec Gen Genet 263:581–585. doi:10.1007/pl00008686

    CAS  PubMed  Google Scholar 

  • Hwang SM, Grimes J (1996) Styracaceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 15., vol 15Science Press, Beijing, pp 253–271

    Google Scholar 

  • Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Molec Phylogen Evol 48:1204–1217. doi:10.1016/j.ympev.2008.06.013

    Article  CAS  Google Scholar 

  • Johansson JT (1999) There large inversions in the chloroplast genomes and one loss of the chloroplast gene rps16 suggest an early evolutionary split in the genus Adonis (Ranunculaceae). Pl Syst Evol 218:133–143. doi:10.1007/bf01087041

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molec Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Knox EB, Downie SR, Palmer JD (1993) Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Molec Biol Evol 10:414–430

    CAS  Google Scholar 

  • Ku C, Hu JM, Kuo CH (2013) Complete plastid genome sequence of the basal asterid Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. PLoS ONE 8:e62548. doi:10.1371/journal.pone.0062548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi:10.1186/gb-2004-5-2-r12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Molec Biol Evol 24:1161–1180. doi:10.1093/molbev/msm036

    Article  CAS  PubMed  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDraw (OGDraw): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274. doi:10.1007/s00294-007-0161-y

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964. doi:10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Ma PF, Li HT, Yang JB, Wang H, Li DZ (2016) Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early diverging monocot order Alismatales. Genome Biol Evol 8:932–945. doi:10.1093/gbe/evv260

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant book: a portable dictionary of plants, their classifications, and uses, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Maliga P, Svab Z (2011) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols, vol 701. Springer, New Jersey, pp 37–50. doi:10.1007/978-1-61737-957-4_2

    Chapter  Google Scholar 

  • Martinez-Alberola F, del Campo EM, Lazaro-Gimeno D, Mezquita-Claramonte S, Molins A, Mateu-Andres I, Pedrola-Monfort J, Casano LM, Barreno E (2013) Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts. PLoS ONE 8:e79685. doi:10.1371/journal.pone.0079685

    Article  PubMed  PubMed Central  Google Scholar 

  • Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J, Pasternak S, Olson A, Jiao Y, Lu Z, Bolser D, Kerhornou A, Staines D, Walts B, Wu G, D’Eustachio P, Haw R, Croft D, Kersey PJ, Stein L, Jaiswal P, Ware D (2014) Gramene 2013: comparative plant genomics resources. Nucl Acids Res 42:D1193–D1199. doi:10.1093/nar/gkt1110

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628. doi:10.1073/pnas.0907801107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Pl Biotechnol J 9:328–333. doi:10.1111/j.1467-7652.2010.00558.x

    Article  CAS  Google Scholar 

  • Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ (2000) The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Molec Phylogen Evol 16:96–112. doi:10.1006/mpev.1999.0769

    Article  CAS  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. doi:10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2007) An update on chloroplast genomes. Pl Syst Evol 271:101–122. doi:10.1007/s00606-007-0608-0

    Article  Google Scholar 

  • Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. doi:10.1186/1471-2148-14-23

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruhlman TA, Jansen RK (2014) The plastid genomes of flowering plants. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols, vol 1132. Springer, New York, pp 3–38. doi:10.1007/978-1-62703-995-6_1

    Chapter  Google Scholar 

  • Schönenberger J, Anderberg AA, Sytsma KJ (2005) Molecular phylogenetics and patterns of floral evolution in the Ericales. Int J Pl Sci 166:265–288

    Article  Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Amer J Bot 98:704–730

    Article  Google Scholar 

  • Son O, Park SJ (2016) Complete chloroplast genome sequence of Lysimachia coreana (Primulaceae). Mitochondrial DNA 27:2263–2265. doi:10.3109/19401736.2014.984172

    PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stull GW, Duno de Stefano R, Soltis DE, Soltis PS (2015) Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Amer J Bot 102:1794–1813. doi:10.3732/ajb.1500298

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts. doi:10.1111/j.0014-3820.2002.tb00191.x

  • Szczecinska M, Gomolinska A, Szkudlarz P, Sawicki J (2014) Plastid and nuclear genomic resources of a relict and endangered plant species: chamaedaphne calyculata (L.) Moench (Ericaceae). Turkish J Bot 38:1229–1238. doi:10.3906/bot-1405-80

    Article  CAS  Google Scholar 

  • Thorne RF (2000) The classification and geography of the flowering plants: dicotyledons of the class angiospermae (subclasses magnoliidae, ranunculidae, caryophyllidae, dilleniidae, rosidae, asteridae, and lamiidae). Bot Rev 66:441–647. doi:10.1007/bf02869011

    Article  Google Scholar 

  • Walker JF, Zanis MJ, Emery NC (2014) Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Amer J Bot 101:722–729. doi:10.3732/ajb.1400049

    Article  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858. doi:10.1073/pnas.0813376106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng ML, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastid genome in geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molec Biol Evol 31:645–659. doi:10.1093/molbev/mst257

    Article  CAS  PubMed  Google Scholar 

  • Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Pl Molec Biol 76:273–297. doi:10.1007/s11103-011-9762-4

    Article  CAS  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. doi:10.1093/bioinformatics/bth352

    Article  CAS  PubMed  Google Scholar 

  • Yang JB, Tang M, Li HT, Zhang ZR, Li DZ (2013) Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol Biol 13:84. doi:10.1186/1471-2148-13-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JB, Li DZ, Li HT (2014) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Molec Ecol Resour 14:1024–1031. doi:10.1111/1755-0998.12251

    Article  CAS  Google Scholar 

  • Yao XH, Tang P, Li ZZ, Li DW, Liu YF, Huang HW (2015) The first complete chloroplast genome sequences in Actinidiaceae: genome structure and comparative analysis. PLoS ONE 10:e0129347. doi:10.1371/journal.pone.0129347

    Article  PubMed  PubMed Central  Google Scholar 

  • Yukawa MT, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Molec Genet Genomics 275:367–373. doi:10.1007/s00438-0050092-6

    Article  CAS  Google Scholar 

  • Zhang L, Wu W, Yan HF, Ge XJ (2015) Phylotranscriptomic analysis based on coalescence was less influenced by the evolving rates and the number of genes: a case study in Ericales. Evol Bioinform 11:81–91. doi:10.4137/EBO.S22448

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31370223 and 31070191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengchang Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Handling editor: Jürg Schönenberger.

Information on Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. NCBI accession information for the plastomes included in this study.

Online Resource 2. Gene partitions.

Online Resource 3. Genes contained in the Alniphyllum eberhardtii plastome.

Online Resource 4. Location and length distribution of SSRs in the Alniphyllum eberhardtii plastome.

Online Resource 5. Phylogenetic position of Alniphyllum eberhardtii as inferred by MP analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Moore, M.J., Meng, A. et al. The first complete plastome sequence of the basal asterid family Styracaceae (Ericales) reveals a large inversion. Plant Syst Evol 303, 61–70 (2017). https://doi.org/10.1007/s00606-016-1352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1352-0

Keywords

Navigation