Skip to main content
Log in

Development of SSR markers from Musa balbisiana for genetic diversity analysis among Thai bananas

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Bananas in Thailand have been surveyed by our team to be at least 140 cultivars in the plantations, 10 wild species and, 4 introduced species. To characterize the genetic relationship of species and cultivars, a set of novel SSR markers was developed. Totaling 53 clones containing SSR motifs were isolated from SSR-enriched library of wild Musa balbisiana Colla ‘Tani’ (BB). Selected positive clones were used to design 28 primer pairs for amplification of 12 wild and 82 cultivar accessions with genome designations AA, AB, AAA, AAB, ABB, and BBB. These SSR markers loci were homology searched to the banana genomes to map their locations. The seven-sets multiplex PCR approach using four fluorescent-labeled universal primers were utilized for cost effectiveness. Capillary fragment analysis yielded the accurate size of amplicons for evaluation of particular patterns for each cultivar. Phylogram and Structure analysis presented the specific genotype of genome groups (A and B genotypes, polyploid hybrid genomes) and cultivar groups. By A:B specific alleles ratio, accurate genome designations of hybrids can be determined. Additionally, a marker, characterized to be partial plastid ycf2 gene, indicated the maternal identification of hybrid cultivars. One SSR marker was also preliminary tested with some wild species and advised to be the candidate fingerprinting marker for species identification. In conclusion, SSR marker sets developed here proved their exploitation in detailed identity and relationship of cultivated bananas, which would be useful for genetic conservation and ongoing breeding programs in Thailand and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addisalem AB, Esselink GD, Bongers F, Smulders MJM (2015) Genomic sequencing and microsatellite marker development for Boswellia papyrifera, an economically important but threatened tree native to dry tropical forests. AoB PLANTS 7:plu086. doi:10.1093/aobpla/plu086

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JA, Churchill GA, Sutrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186. doi:10.1139/g93-024

    Article  CAS  PubMed  Google Scholar 

  • Barrett CF, Specht CD, Leebens-Mack J, Stevenson DW, Zomlefer WB, Davis JI (2014) Resolving ancient radiation: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann Bot (Oxford) 113:119–133. doi:10.1093/aob/mct264

    Article  Google Scholar 

  • Bartoš J, Alkhimova O, Doleželová M, De Langhe E, Doležel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109:50–57. doi:10.1159/000082381

    Article  PubMed  Google Scholar 

  • Biémont C (2008) Genome size evolution: within-species variation in genome size. Heredity 101:297–298. doi:10.1038/hdy.2008.80

    Article  PubMed  Google Scholar 

  • Blacket MJ, Robin C, Good RT, Lee SF, Miller AD (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Molec Ecol Resources 12:456–463. doi:10.1111/j.1755-0998.2011.03104.x

    Article  CAS  Google Scholar 

  • Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 (Bethesda) 2:721–729. doi:10.1534/g3.112.002659

    Article  CAS  Google Scholar 

  • Buhariwalla HK, Jarret RL, Jayashree B, Crouch JH, Oritiz R (2005) Isolation and characterization of microsatellite markers from Musa balbisiana. Molec Ecol Notes 5:327–330. doi:10.1111/j.1471-8286.2005.00916.x

    Article  CAS  Google Scholar 

  • Chomchalow N, Silayoi B (1984) Banana germplasm in Thailand. IBPGR/SEAP Newslett 8:23–28. http://pikul.lib.ku.ac.th/Fulltext_kukr/KU0222046c.pdf

  • Christelová P, Valárik M, Hřibová E, Van den Houwe I, Channelière S, Roux N, Doležel J (2011) A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants 2011:plr024. doi:10.1093/aobpla/plr024

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark LV, Jasieniuk M (2011) POLYSAT: an R package for polyploid microsatellite analysis. Molec Ecol Resources 11:562–566. doi:10.1111/j.1755-0998.2011.02985.x

    Article  Google Scholar 

  • Creste S, Benatti TR, Orsi MR, Risterucci A-M, Figueira A (2006) Isolation and characterization of microsatellite loci from a commercial cultivar of Musa acuminata. Molec Ecol Notes 6:303–306. doi:10.1111/j.1471-8286.2005.01209.x

    Article  CAS  Google Scholar 

  • Crouch JH, Crouch HK, Ortiz R, Jarret RL (1997) Microsatellite markers for molecular breeding of Musa. InfoMusa 6:5–6. doi:10.1300/J144v01n01_06

    Google Scholar 

  • Culley TM, Stamper TI, Stokes RL, Brzyski JR, Hardiman NA, Klooster MR, Merritt BJ (2013) An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl Plant Sci 1:1300027. doi:10.3732/apps.1300027

    Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genom 14:683. doi:10.1186/1471-2164-14-683

    Article  CAS  Google Scholar 

  • de Jesus ON, Silva SDOE, Amorim EP, Ferreira CF, de Campos JMS, Silva GDG, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol 13:41. doi:10.1186/1471-2229-13-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF et al (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120. doi:10.1186/1471-2164-14-120

    Article  CAS  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079. doi:10.1101/gr.132102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Paget-Goy A, Escoute J, Carreel F (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183. doi:10.1007/s001220050024

    Article  Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217. doi:10.1038/nature11241

    Article  PubMed  Google Scholar 

  • Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244. doi:10.1038/nprot.2007.310

    Article  PubMed  Google Scholar 

  • Droc G, Larivière D, Guignon V et al (2013) The banana genome hub. Database (Oxford) 2013:035. doi:10.1093/database/bat035

    Article  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resources 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109:402–408. doi:10.1007/s00122-004-1645-5

    Article  CAS  PubMed  Google Scholar 

  • Eustice M, Yu Q, Lai CW, Hou S, Thimmapuram J, Liu L, Alam M, Moore PH, Presting GG, Ming R (2008) Development and application of microsatellite markers for genomic analysis of papaya. Tree Genet Genomes 4:333–341. doi:10.1007/s11295-007-0112-2

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  Google Scholar 

  • Fredotović Z, Šamanić I, Weiss-Schneeweiss H, Kamenjarin J, Jang T, Puizina J (2014) Triparental origin of triploid onion, Allium × cornutum (Clementi ex Visiani, 1842), as evidenced by molecular, phylogenetic and cytogenetic analyses. BMC Plant Biol 14:24. doi:10.1186/1471-2229-14-24

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLOS One 6:e28334. doi:10.1371/journal.pone.0028334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge XJ, Liu MH, Wang WK, Schaal BA, Chiang TY (2005) Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Molec Ecol 14:933–944. doi:10.1111/j.1365-294x.2005.02467.x

    Article  CAS  Google Scholar 

  • Ge C, Cui YN, Jing PY, Hong XY (2014) An alternative suite of universal primers for genotyping in multiplex PCR. PLOS One 9:e92826. doi:10.1371/journal.pone.0092826

    Article  PubMed  PubMed Central  Google Scholar 

  • Getachew S, Mekbib F, Admassu B, Kelemu S, Kidane S, Negisho K, Djikeng A, Nzuki I (2014) A look into genetic diversity of Enset (Ensete ventricosum (Welw.) Cheesman) using transferable microsatellite sequences of banana in Ethiopia. J Crop Improv 28:159–183. doi:10.1080/15427528.2013.861889

    Article  Google Scholar 

  • Häkkinen M (2013) Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 62:809–813. doi:10.12705/624.3

    Article  Google Scholar 

  • Häkkinen M, Hong W (2007) New species and variety of Musa (Musaceae) from Yunnan, China. Novon 17:440–446. doi:10.3417/1055-3177(2007)17[440:NSAVOM]2.0.CO;2

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot (Oxford) 100:1073–1084. doi:10.1093/aob/mcm191

    Article  CAS  Google Scholar 

  • Hippolyte I, Bakry F, Seguin M et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65. doi:10.1186/1471-2229-10-65

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877. doi:10.1101/gr.9.9.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800. doi:10.1038/nature03895

    Article  Google Scholar 

  • Iwata H, Kato T, Ohno S (2000) Triparental origin of Damask roses. Gene 259:53–59. doi:10.1016/S0378-1119(00)00487-x

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • James EA, Brown GK, Citroen R, Rossetto M, Porter C (2011) Development of microsatellite loci in Triglochin procera (Juncaginaceae), a polyploid wetland plant. Conservation Genet Resources 3:103–105. doi:10.1007/s12686-010-9301-7

    Article  Google Scholar 

  • Jeridi M, Bakry F, Escoute J, Fondi E, Carreel F, Ferchichi A, D’Hont A, Rodier-Goud M (2011) Homoeologous chromosome pairing between the A and B genomes of Musa spp. revealed by genomic in situ hybridization. Ann Bot (Oxford) 108:975–981. doi:10.1093/aob/mcr207

    Article  CAS  Google Scholar 

  • Kaemmer D, Fischer D, Jarret RL, Baurens F-C, Grapin A, Dambier D, Noyer J-L, Lanaud C, Kahl G, Lagoda PJL (1997) Molecular breeding in the genus Musa: a strong case for STMS marker technology. Euphytica 96:49–63. doi:10.1023/A:1002922016294

    Article  CAS  Google Scholar 

  • Lagoda PJ, Noyer JL, Dambier D, Baurens FC, Grapin A, Lanaud C (1998) Sequence tagged microsatellite site (STMS) markers in the Musaceae. Molec Ecol 7:659–663

    CAS  Google Scholar 

  • Lysák MA, Doleželová M, Horry JP, Swennen R, Doležel J (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350

    Article  Google Scholar 

  • Martin G, Baurens FC, Cardi C, Aury J, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLOS One 8:e67350. doi:10.1371/journal.pone.0067350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbanjo EGN, Tchoumbougnang F, Mouelle AS, Oben JE, Nyine M, Dochez C, Ferguson ME, Lorenzen J (2012) Molecular marker-based genetic linkage map of a diploid banana population (Musa acuminata Colla). Euphytica 188:369–386. doi:10.1007/s10681-012-0693-1

    Article  Google Scholar 

  • Miller RNG, Passos MAN, Menezes NNP, Souza MT, Costa MMC, Azevedo VCR, Amorim EP, Pappas GJ, Ciampi AY (2010) Characterization of novel microsatellite markers in Musa acuminata subsp. burmannicoides, var. Calcutta 4. BMC Res Notes 3:148. doi:10.1186/1756-0500-3-148

    Article  PubMed  PubMed Central  Google Scholar 

  • Missiaggia A, Grattapaglia D (2006) Plant microsatellite genotyping with 4-color fluorescent detection using multiple-tailed primers. Genet Molec Res 5:72–78

    CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nsabimana A, van Staden J (2006) Ploidy investigation of bananas (Musa spp.) from the National Banana Germplasm Collection at Rubona-Rwanda by flow cytometry. S African J Bot 72:302–305. doi:10.1016/j.sajb.2005.10.004

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. CIRAD Agricultural Research for Development. http://darwin.cirad.fr/

  • Pillay M, Ogundiwin E, Nwakanma DC, Ude G, Tenkouano A (2001) Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet 102:965–970. doi:10.1007/s001220000500

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman AY, Usharraj AO, Misra BB et al (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genom 14:75. doi:10.1186/1471-2164-14-75

    Article  Google Scholar 

  • Ravishankar KV, Raghavendra KP, Athani V, Rekha A, Sudeepa K, Bhavya D, Srinivar V, Ananad L (2013) Development and characterisation of microsatellite markers for wild banana (Musa balbisiana). J Hort Sci Biotechnol 88:605–609

    CAS  Google Scholar 

  • Ray T, Dutta I, Saha P, Das S, Roy SC (2006) Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tissue Organ Cult 85:11–21. doi:10.1007/s11240-005-9044-4

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schlötterer C, Harr B (2004) Microsatellite instability. Wiley, Hoboken, NJ, USA. doi:10.1038/npg.els.0000840

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  • Shokeen B, Sethy NK, Kumar S, Bhatia S (2007) Isolation and characterization of microsatellite markers for analysis of molecular variation in the medicinal plant Madagascar periwinkle (Catharanthus roseus (L.) G. Don). Plant Sci (Elsevier) 172:441–451. doi:10.1016/j.plantsci.2006.10.010

    Article  CAS  Google Scholar 

  • Simmonds NW (1962) The evolution of the bananas. Longmans, London

    Google Scholar 

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc Bot 55:302–312. doi:10.1111/j.1095-8339.1955.tb00015.x

    Article  Google Scholar 

  • Soto JC, Ortiz JF, Perlaza-Jiménez L, Vásquez AX, Lopez-Lavalle LA, Mathew B, Léon J, Bernal AJ, Ballvora A, López CE (2015) A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genom 16:190. doi:10.1186/s12864-015-1397-4

    Article  Google Scholar 

  • Swangpol S, Somana J (2011) Musa serpentina (Musaceae): a new banana species from western border of Thailand. Thai Forest Bull Bot 39:31–36

    Google Scholar 

  • Swangpol S, Volkaert HA, Sotto RC, Seelanan T (2007) Utility of selected non-coding chloroplast DNA sequences for lineage assessment of Musa interspecific hybrids. J Biochem Molec Biol 40:577–587

    Article  CAS  Google Scholar 

  • Swangpol S, Somana J, Chattrakom S, Sukkaewmanee N, Kiatprapai P (2009) 108 Thai Banana Cultivars [in Thai]. Bangkok Publishing, Bangkok

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452. doi:10.1101/gr.184001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi:10.1038/35048692

    Article  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. doi:10.1038/nature10158

    Article  Google Scholar 

  • Thomson MJ, Zhao K, Wright M et al (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Molec Breed 29:875–886. doi:10.1007/s11032-011-9663-x

    Article  CAS  Google Scholar 

  • Valmayor RV, Jamaluddin SH, Silayoi B, Kusumo S, Danh LD, Pascua OC, Espino RRC (2000) Banana cultivar names and synonyms in Southeast Asia. International Network for Improvement of Banana and Plantain—Asia and the Pacific Office, Los Baños

  • van Dijk T, Noordijk Y, Dubos T, Bink MC, Meulenbroek BJ, Visser RG, van de Weg E (2012) Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids. BMC Plant Biol 12:25. doi:10.1186/1471-2229-12-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Vukosavljev M, Esselink GD, Van′t Westende WPC, Cox P, Visser RGF, Arens P, Smulders MJM (2015) Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Molec Ecol Resources 15:17–27. doi:10.1111/1755-0998.12289

    Article  CAS  Google Scholar 

  • Wang JY, Zheng LS, Huang BZ, Liu WL, Wu YT (2010) Development, characterization, and variability analysis of microsatellites from a commercial cultivar of Musa acuminata. Genet Resources Crop Evol 57:553–563. doi:10.1007/s10722-009-9493-4

    Article  CAS  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wongniam S, Somana J, Swangpol S, Seelanan T, Chareonsap P, Chadchawan S, Jenjittikul T (2010) Genetic diversity and species-specific PCR-based markers from AFLP analyses of Thai bananas. Biochem Syst Ecol 38:416–427. doi:10.1016/j.bse.2010.03.015

    Article  CAS  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Amer J Bot 99:193–208. doi:10.3732/ajb.1100394

    Article  CAS  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Molec Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Thailand Research Fund in collaboration with the Commission on Higher Education of Thailand to JS (MRG5380133) and to SCS (MRG5280100) and Plant Genetic Conservation Project, under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn to PPC. Research Assistant Supporting Grant was provided by Faculty of Science, Mahidol University to TR. The authors are grateful for banana samples and knowledge from all institutes and collectors including Pra Sobhon Khanaporn and Mr. Samadchai Chattrakhom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamorn Somana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Eric Schranz.

Below is the link to the electronic supplementary material.

606_2015_1274_MOESM1_ESM.doc

Online Resource 1 Banana samples, 12 wild and 82 cultivar accessions from the collections in Thailand, with their source locations (DOC 166 kb)

Online Resource 2 Supplementary materials and methods (DOC 35 kb)

Online Resource 3 List of banana cultivars in Thailand with previous and suggested genome designations (DOC 45 kb)

606_2015_1274_MOESM4_ESM.doc

Online Resource 4 SSR loci information and position on designated chromosomes of AA genome: Musa acuminata accession ‘Pahang’ (DOC 246 kb)

606_2015_1274_MOESM5_ESM.doc

Online Resource 5 SSR loci information and position on designated chromosomes of BB genome: Musa balbisiana accession ‘Pisung Klutuk Wulung’ (DOC 237 kb)

Online Resource 6 Microsatellite profiling of A- and B-genome specific alleles in 17 SSR markers (DOC 47 kb)

Online Resource 7 Estimation of optimal K evaluated by Structure Harvester program (DOC 199 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Banana samples, 12 wild and 82 cultivar accessions from the collections in Thailand, with their source locations.

Online Resource 2. Supplementary materials and methods.

Online Resource 3. List of banana cultivars in Thailand with previous and suggested genome designations.

Online Resource 4. SSR loci information and position on designated chromosomes of AA genome: Musa acuminata accession ‘Pahang’.

Online Resource 5. SSR loci information and position on designated chromosomes of BB genome: Musa balbisiana accession ‘Pisung Klutuk Wulung’.

Online Resource 6. Microsatellite profiling of A- and B-genome specific alleles in 17 SSR markers.

Online Resource 7. Estimation of optimal K evaluated by Structure Harvester program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotchanapreeda, T., Wongniam, S., Swangpol, S.C. et al. Development of SSR markers from Musa balbisiana for genetic diversity analysis among Thai bananas. Plant Syst Evol 302, 739–761 (2016). https://doi.org/10.1007/s00606-015-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1274-2

Keywords

Navigation