Skip to main content

Advertisement

Log in

Population differentiation and phenotypic plasticity in temperature response of bud burst in Frangula alnus provenances of different latitude

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Flushing in spring marks an important adaptive process in a tree’s growth cycle. We studied bud burst in three provenances of a common small tree Frangula alnus Mill., originating from Italy, Belgium and Sweden. We observed timing of bud burst and leaf senescence in a common garden, and timing and duration of bud burst in greenhouse conditions (cuttings) with different temperature regimes, all located in Belgium. The early bud burst response of the southern European provenance together with the later leaf senescence compared to the local provenance indicated population differentiation that may, at least partly, be driven by local adaptation to a longer growing season. The duration of the process was longer in the cold greenhouse compared to the local provenance, whereas it responded similar as the local provenance in the warm greenhouse, suggesting adaptation to warmer conditions. Unexpectedly, the northern European provenance expressed a plastic reaction to warmer temperatures in the field trial and in the greenhouse conditions flushing in both cases earlier than the local provenance. The duration of the process in the warm greenhouse compared to the local provenance was shorter, whereas in the cold greenhouse it was similar. This result again suggested that not only the onset, but also the duration of the bud burst process was a plastic reaction to the warmer conditions compared to its site of origin. Together, our results suggest two mechanisms driving bud burst in F. alnus provenances, a co-gradient and a counter-gradient variation depending on the latitude of origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberto F, Aitken S, Alía R, González-Martínez S, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Change Biol 19:1645–1661

    Article  Google Scholar 

  • Alberto F, Bouffier L, Louvet JM, Lamy JB, Delzon S, Kremer A (2011) Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J Evol Biol 24:1442–1454

    Article  CAS  PubMed  Google Scholar 

  • Basler D, Körner C (2014) Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol. doi:10.1093/treephys/tpu021

    Google Scholar 

  • Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R (2010) Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Glob Change Biol 16:1503–1514. doi:10.1111/j.1365-2486.2009.02095

    Article  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146

    Article  Google Scholar 

  • Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55:711–721. doi:10.1007/s00484-010-0386-1

    Article  PubMed  Google Scholar 

  • Ceulemans R, Scarascia-Mugnozza GE, Wiard JH, Braatne BM, Hinckley TM, Stettler RF, Isebrands JG, Heilman PE (1992) Production physiology and morphology of Populus species and their hybrids grown under short rotation. I. Clonal comparisons of 4-year growth and phenology. Canad J Forest Res 22:1937–1948

    Article  Google Scholar 

  • Christensen RHB (2013) Ordinal: regression models for ordinal data. R package version 2013.10-31. Available at: http://www.cran.r-project.org/package=ordinal/. Accessed 1 Nov 2014

  • DeBell DS, Harrington CA, Clendenen GW, Zasada JS (1997) Tree growth and stand development of four Populus clones in large monoclonal plots. New Forest 14:1–18

    Article  Google Scholar 

  • Ducousso A, Guyon JP, Kremer A (1996) Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt.) Liebl.). Ann Sci Forest 53:775–782

    Article  Google Scholar 

  • Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Canad J Forest Res 29:9–19. doi:10.1139/Cjfr-29-1-9

    Article  Google Scholar 

  • Hannerz M, Ekberg I, Norell L (2003) Variation in chilling requirements for completing bud rest between provenances of Norway spruce. Silvae Genet 52:161–168

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hunter MD (1992) A variable insect–plant interaction: the relationship between tree bud burst phenology and population levels of insect herbivores among trees. Ecol Entomol 16:91–95

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Letters 15:378–392. doi:10.1111/j.1461-0248.2012.01746

    Article  Google Scholar 

  • Laikre L, Schwartz MK, Waples RS, Ryman N (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25:520–529

    Article  PubMed  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Managem 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic plasticity in plants. Ann New York Acad Sci 1206:35–55

    Article  Google Scholar 

  • Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean plants to global change. Environm Exp Bot 103:53–67

    Article  Google Scholar 

  • Medan D (1994) Reproductive biology of Frangula alnus Miller in southern Spain. Pl Syst Evol 193:173–186

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restorat Ecol 13:432–440

    Article  Google Scholar 

  • McKown AD, Guy RD, Klapste J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ (2014) Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol 201:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Cannell M, Smith R (1989) Date of budburst of fifteen tree species in Britain following climatic warming. J Appl Ecol 26:693–700

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  PubMed  Google Scholar 

  • Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590. doi:10.1046/j.1365-2435.1998.00236

    Article  Google Scholar 

  • Olson MS, Levsen N (2012) Classic clover cline clues. Molec Ecol 21:2315–2317. doi:10.1111/j.1365-294X.2012.05503

    Article  Google Scholar 

  • Olsson C, Bolmgren K, Lindstrom J, Jonsson AM (2013) Performance of tree phenology models along a bioclimatic gradient in Sweden. Ecol Modelling 266:103–117. doi:10.1016/j.ecolmodel.2013.06.026

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: http://www.r-project.org/. Accessed 1 Nov 2014

  • Robson TM, Alia R, Bozic G, Clark J, Forsteuter M, Gomory D, Liesebach M, Mertens P, Rasztovits E, Zitova M, vonWuhlisch G (2011) The timing of leaf flush in European beech (Fagus sylvatica L.) saplings. Genetic resources of European beech (Fagus sylvatica L.) for sustainable forestry, Proceedings of the COST E52 final meeting, Serie Forestal 22:61–80

  • Robson TM, Rasztovits E, Aphalo PJ, Alia R, Aranda I (2013) Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agric Forest Meteorol 180:76–85. doi:10.1016/j.agrformet.2013.05.008

    Article  Google Scholar 

  • Rohde A, Bastien C, Boerjan W (2011) Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol 31:472–482. doi:10.1093/treephys/tpr038

    Article  PubMed  Google Scholar 

  • Rousi M, Pusenius J (2005) Variations in phenology and growth of European white birch (Betula pendula) clones. Tree Physiol 25:201–210

    Article  PubMed  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi:10.1146/annurev.ecolsys.38.091206.095646

    Article  Google Scholar 

  • Seppälä R, Buck A, Katila P (2009) Adaptation of forests and people to climate change. A global assessment report, vol 22. IUFRO World Series, Helsinki

    Google Scholar 

  • Soularue JP, Kremer A (2012) Assortative mating and gene flow generate clinal phenological variation in trees. BMC Evol Biol. doi:10.1186/1471-2148-12-79

    PubMed Central  PubMed  Google Scholar 

  • Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Pl Molec Biol 73:49–65. doi:10.1007/s11103-010-9610-y

    Article  CAS  Google Scholar 

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Vander Mijnsbrugge K, Onkelinx T, De Cuyper B (2015) Variation in bud burst and flower opening responses of local versus non-local provenances of hawthorn (Crataegus monogyna Jacq.) in Belgium. Pl Syst Evol 301:1171–1179. doi:10.1007/s00606-014-1141-6

    Article  Google Scholar 

  • Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218. doi:10.1111/j.1365-2435.2010.01748

    Article  Google Scholar 

  • Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canad J Forest Res 39:1259–1269. doi:10.1139/X09-054

    Article  Google Scholar 

  • vonWuehlisch G, Krusche D, Muhs HJ (1995) Variation in temperature sum requirement for flushing of beech provenances. Silvae Genet 44:343–346

    Google Scholar 

  • Williams M, Dumroese R (2014) Assisted migration: what it means to nursery managers and tree planters. Tree Planters’ Notes 57:21–26

    Google Scholar 

Download references

Acknowledgments

We like to thank Hanne De Kort for sample collection. We also thank Stefaan Moreels for all the nursery work and André Meersman for field evaluations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Vander Mijnsbrugge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Walter Durka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vander Mijnsbrugge, K., Turcsán, A. & Michiels, B. Population differentiation and phenotypic plasticity in temperature response of bud burst in Frangula alnus provenances of different latitude. Plant Syst Evol 302, 257–264 (2016). https://doi.org/10.1007/s00606-015-1258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1258-2

Keywords

Navigation