Skip to main content
Log in

Soil seed bank contributes significantly to genetic variation of Hypericum sinaicum in a changing environment

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The contribution of soil seed bank of a desert endemic plant species in maintaining genetic diversity has been addressed in this paper through investigating the differences in genetic diversity and structure (using AFLP markers) between plants grown from soil seed bank and standing crop plants within and among five populations of H. sinaicum growing at St. Katherine Protectorate, southern Sinai, Egypt. Standard genetic diversity measures showed that the molecular variation within and among populations was highly significantly different between standing crop and soil seed bank. While soil seed bank had lower genetic diversity than standing crop populations, pooling soil seed bank with standing crop samples resulted in higher diversity. The results revealed also that soil seed bank had lower differentiation (7 %) than among populations of the standing crop (18 %). Results of neighbor-joining, Bayesian clustering and principal coordinate analysis showed that soil seed banks had a separate gene pool different from standing crop. The study came to the conclusion that the genetic variation of the soil seed bank contributes significantly to the genetic variation of the species. This also stresses the importance of elucidating the genetic diversity and structure of the soil seed bank for any sound and long-term conservation efforts for desert species. These have been growing in small-size populations for a long time that any estimates gained only from aboveground sampling of populations may be ambiguous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd El-Wahab RH, Zaghloul MS, Moustafa AA (2004) Conservation of medicinal plants in St. Catherine Protectorate, South Sinai. I. Evaluation of ecological status and human impact. Proceedings of First International Conference on Strategy of Egyptian Herbaria. pp 231–251 March 9–11; Giza, Egypt

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Bosbach K, Hurka H, Haase R (1982) The soil seed bank of Capsella bursa-pastoris (Cruciferae): its influence on population variability. Flora 172:47–56

    Google Scholar 

  • Brown D (1992) Estimating the composition of a forest seed bank: a comparison of the seed extraction and seedling emergence methods. Can J Bot 70:1603–1612

    Article  Google Scholar 

  • Brown JS, Venable DL (1986) Evolutionary ecology of seed bank annuals in temporally varying environments. Am Nat 127:31–47

    Article  Google Scholar 

  • Cabin RJ (1996) Genetic comparisons of seed bank and seedling populations of a perennial desert mustard, Lesquerella fendleri. Evolution 50(5):1830–1841

    Article  Google Scholar 

  • Cabin RJ, Mitchell RJ, Marshall DL (1998) Do surface plant and soil seed bank populations differ genetically? A multipopulation study of the desert mustard Lesquerella fendleri (Brassicaceae). Am J Bot 85(9):1098–1109

    Article  PubMed  CAS  Google Scholar 

  • Cavers PB (1974) Germination polymorphism in Rumex crispus. The effects of different storage conditions on germination responses of seeds collected from individual plants. Can J Bot 52:575–583

    Article  Google Scholar 

  • Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Childs S, Goodall DW (1973) Seed reserve of desert soils. US/IBP Desert Biome Res. Memo. Utah State University, Logan, pp 73–75

  • Cirak C (2007) Seed germination protocols for Ex situ conservation of some Hypericum species from Turkey. Am J Plant Physiol 2(5):287–294

    Article  CAS  Google Scholar 

  • Danin A (1983) Desert vegetation of Israel and Sinai. Cana Publishing House, Jerusalem

    Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  PubMed  CAS  Google Scholar 

  • del Castillo RF (1994) Factors influencing the genetic structure of Phacelia dubia, a species with a seed bank and large fluctuations in population size. Heredity 72:446–458

    Article  Google Scholar 

  • Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evans MEK, Dennehy JJ (2005) Germ banking: bet-hedging and variable release from egg and seed dormancy. Q Rev Biol 80(4):431–451

    Article  PubMed  Google Scholar 

  • Evans MEK, Ferriere R, Kane JJ, Venable DL (2007) Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. Am Nat 169:184–194

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Facelli JM, Chesson P, Barnes N (2005) Differences in seed biology of annual plants in arid lands: a key ingredient of the storage effect. Ecology 86:2998–3006

    Article  Google Scholar 

  • Falahati-Anbaran M, Lundemo S, Ågren J, Stenøien HK (2011) Genetic consequences of seed banks in the perennial herb Arabidopsis lyrata subsp. petraea (Brassicaceae). Am J Bot 98(9):1475–1485

    Article  PubMed  Google Scholar 

  • Falk DA (1992) From conservation biology to conservation practice: strategies for protecting plant diversity. In: Fiedler PL, Kain SK (eds) Conservation biology. Chapman and Hall, New York, pp 397–431

    Chapter  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Freas KE, Kemp PR (1983) Some relationships between environmental reliability and seed dormancy in desert annual plants. J Ecol 71:211–217

    Article  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87(6):783–792

    Article  PubMed  CAS  Google Scholar 

  • Gross KL (1990) A comparison of methods for estimating seed numbers in the soil. J Ecol 78:1079–1093

    Article  Google Scholar 

  • Hamrick JL (1989) Isozymes and analyses of genetic structure of plant populations. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Discorides Press, Portland Oregon, pp 87–105

    Chapter  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans Royal Soc Lond B Biol Sci 351(1345):1291–1298

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

    Article  PubMed  Google Scholar 

  • Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K (2008) Can a seed bank maintain the genetic variation in the above ground plant population? Oikos 117:1–5

    Article  Google Scholar 

  • Jaenike J, Holt RD (1991) Genetic variation for habitat preference: evidence and explanations. Am Nat 137:S67–S90

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Jump AS, Penuelas J, Rico L, Ramallo E, Stiarte M, Martínez-Izquierdo JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Change Biol 14:637–643

    Article  Google Scholar 

  • Kalisz S, McPeek MA (1993) Extinction dynamics, population growth and seed banks. Oecologia 95:314–320

    Article  Google Scholar 

  • Kemp PR (1989) Ecology of soil seed banks. In: Leck MA, Parker VT, Simpson RL (eds) Seeds banks and vegetation processes in deserts. Academic Press, San Diego, pp 257–282

    Google Scholar 

  • Lambers JHR, Clark JS, Lavine M (2005) Implications of seed banking for recruitment of southern Appalachian woody species. Ecology 86:85–95

    Article  Google Scholar 

  • Leck MA, Parker VT, Simpson RL (1989) Ecology of soil seed banks. Academic Press, San Diego

    Google Scholar 

  • Levin DA (1978) Some genetic consequences of being a plant. In: Brussard P (ed) Ecological genetics: the interface. Springer, New York, pp 189–212

    Chapter  Google Scholar 

  • Levin DA (1990) The seed bank as a source of genetic novelty in plants. Am Nat 135:563–572

    Article  Google Scholar 

  • Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Fork.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104:388–398

    Article  PubMed  CAS  Google Scholar 

  • Mahy G, Vekemans X, Jacquemart AL (1999) Patterns of allozymic variation within Calluna vulgaris populations at seed bank and adult stages. Heredity 82:432–440

    Article  PubMed  CAS  Google Scholar 

  • McCue KA, Holtsford TP (1998) Seed bank influences on genetic diversity in the rare annual Clarkia springvillensis (Onagraceae). Am J Bot 85(1):30–36

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Philippi T (1993) Bet-hedging germination of desert annuals: beyond the first year. Am Nat 142:474–487

    Article  PubMed  CAS  Google Scholar 

  • Reichman OJ (1975) Relation of desert rodent diets to available resources. J Mammol 56:731–751

    Article  Google Scholar 

  • Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conserv Genet 8:893–902

    Article  CAS  Google Scholar 

  • Reusch TBH, Wood TE (2007) Molecular ecology of global change. Mol Ecol 16:3973–3992

    Article  PubMed  CAS  Google Scholar 

  • Rice KJ (1989) Impacts of seed banks on grassland community structure and population dynamics. In: Leck MA, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press, San Diego, pp 211–230

    Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Press, Dordrecht, pp 1–8

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Silvertown JW (1984) Phenotypic variety in seed germination behavior: the ontogeny and evolution of somatic polymorphism in seeds. Am Nat 124:1–16

    Article  Google Scholar 

  • Simons AM, Johnston MO (2007) Environmental and genetic sources of diversification in the timing of seed germination: implications for the evolution of bet hedging. Evolution 60:2280–2292

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR, Levin DA (1979) Evolutionary consequence of seed pools. Am Nat 114:232–249

    Article  Google Scholar 

  • Thompson K, Ceriani RM, Bakker JP, Bekker RM (2003) Are seed dormancy and persistence in soil related? Seed Sci Res 13:97–100

    Article  Google Scholar 

  • Tonsor SJ, Kalisz S, Fisher J, Holtsford TP (1993) A life-history based study of population genetic structure: seed bank to adults in Plantago lanceolata. Evolution 47:833–843

    Article  Google Scholar 

  • Van Klinken RD, Lukitsch B, Cook C (2008) Interaction between seed dormancy-release mechanism, environment and seed bank strategy for a widely distributed perennial legume, Parkinsonia aculeata (Caesalpinaceae). Ann Bot 102:255–264

    Article  PubMed  Google Scholar 

  • Verner D (2012) Adaptation to a changing climate in the Arab countries: a case for adaptation governance and leadership in building climate resilience. MENA Development Report, World Bank

    Google Scholar 

  • Westoby M (1981) How diversified seed germination behavior is selected. Am Nat 118:882–885

    Article  Google Scholar 

  • Wijayratne UC, Pyke DA (2012) Burial increases seed longevity of two Artemisia tridentate (Asteraceae). Am J Bot 99(3):438–447

    Article  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

  • Zaghloul MS (2008) Diversity in soil seed bank of Sinai and implications for conservation and restoration. Afr J Environ Sci 2(7):172–184

    Google Scholar 

  • Zaghloul MS, Hamrick JL, Moustafa AA, Kamel WM, El-Ghareeb R (2006) Genetic diversity within and among Sinai populations of three Ballota species (Lamiaceae). J Hered 97(1):45–54

    Article  PubMed  CAS  Google Scholar 

  • Zaghloul MS, Hamrick JL, Moustafa AA (2007) Conservation of Acacia tortilis subsp. raddiana populations in Southern Sinai, Egypt. I-Genetic diversity and structure. CATRINA 2(1):51–60

Download references

Acknowledgments

The authors wish to thank Alexander von Humboldt Foundation for providing funding of this project to the first author under the Georg Forster Fellowship for Experienced Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Zaghloul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaghloul, M., Reisch, C. & Poschlod, P. Soil seed bank contributes significantly to genetic variation of Hypericum sinaicum in a changing environment. Plant Syst Evol 299, 1819–1828 (2013). https://doi.org/10.1007/s00606-013-0837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0837-3

Keywords

Navigation