Skip to main content
Log in

Neopolyploidy in Spartina pectinata Link: 1. Morphological analysis of tetraploid and hexaploid plants in a mixed natural population

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Prairie cordgrass has been reported as a multi-polyploidy species having three cytotypes: tetra- (2n = 4x = 40), hexa- (2n = 6x = 60), and octoploid (2n = 8x = 80). A mixed-ploidy population comprising tetraploids and hexaploids was recently found at a single location in Illinois. However, adaptation and morphological differences between tetra- and hexaploids occurring in natural conditions as well as the contact zones of these cytotypes have yet to be determined. In this study, the cytotypes of 147 individuals of prairie cordgrass collected across the contact zone (4x + 6x) were determined by flow cytometry using somatic G1 nuclei, and the results were confirmed by chromosome counts. Nineteen morphological characteristics were compared between the cytotypes. Tetra- and hexaploid plants have 2C genome sizes of 1.57 and 2.36 pg with chromosome counts of 40 and 60, respectively. This increase in polyploidy resulted in a greater variability of morphological expression in Illinois prairie cordgrass. Substantial differences in the flowering time, stomatal size, and plant morphological characteristics were observed between tetra- and hexaploids. The results indicate that the increasing of ploidy level in prairie cordgrass resulted in increased plant size in ploidy mixtures. The recent event of ploidy mixtures in prairie cordgrass natural populations offers unique opportunities for studying the formation and establishment of neopolyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    PubMed  CAS  Google Scholar 

  • Appels R, Morris R, Gill BS, May CE (1998) Chromosome biology, 1st edn. Kluwer, Canberra

    Google Scholar 

  • Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783–1788

    PubMed  Google Scholar 

  • Barkworth ME, Anderton LK, Capels KM, Long S, Piep MB (2007) Manual of grasses for North America. Utah State University Press, Logan

    Google Scholar 

  • Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C. E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701

    PubMed  CAS  Google Scholar 

  • Bennett MD (1987) Variations in genome form in plants and its ecological implications. New Phytol 106:177–200

    Google Scholar 

  • Bose RB, Choudhury JK (1962) A comparative study of the cytotaxonomy, palynology, physiology of diploid plants from Ocimum kilimandscharicum Guerke and their yield of raw material and volatile contents. Caryologia 15:435–453

    Google Scholar 

  • Bretagnolle F, Lumaret R (1995) Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurrence, morphological and genetic characteristics of first polyploids. Euphytica 84:197–207

    Google Scholar 

  • Byrne MC, Nelson CJ, Randall DD (1981) Ploidy effects on anatomy and gas exchange of tall fescue leaves. Plant Physiol 68:891–893

    PubMed  CAS  Google Scholar 

  • Cain S (1944) Foundations of plant geography. Harper and Row, New York

    Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    PubMed  CAS  Google Scholar 

  • Dolezel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    PubMed  CAS  Google Scholar 

  • Felber F (1991) Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J Evol Biol 4:195–207

    Google Scholar 

  • Fortune PM, Schierenbeck K, Ainouche A, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of waxy and the origin of hexaploid Spartina species. Mol Phylogenet Evol 43:1040–1055

    PubMed  CAS  Google Scholar 

  • Fortune PM, Schierenbeck K, Ayres D, Bortolus A, Clatrice O, Ainouche ML (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316

    PubMed  CAS  Google Scholar 

  • Garbutt K, Bazzaz FA (1983) Leaf demography, flower production and biomass of diploid and tetraploid populations of Phlox drummondii Hook. on a soil moisture gradient. New Phytol 93:129–141

    Google Scholar 

  • Giles NH Jr (1942) Autopolyploidy and geographical distribution in Cuhbertia graminea Small. Am J Bot 29:637–645

    Google Scholar 

  • Goldblatt P (1980) Polyploidy in angiosperms. In: Lewis WH (ed) Polyploidy-biological relevance. Plenum, New York, pp 219–239

    Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc 76:65–101

    PubMed  CAS  Google Scholar 

  • Groves H, Groves J (1980) Spartina townsendii nobis. Rep Bot Soc Exch Cl Br Isl 1:37

  • Hancock JF, Bringhurst RS (1981) Evolution of California populations of diploid and octoploid Fragaria (Rosaceae): a comparison. Am J Bot 68:1–5

    Google Scholar 

  • Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Global Ecol Biogeogr 16:485–495

    Google Scholar 

  • Hoya A, Shibaike H, Morita T, Ito M (2007) Germination characteristics of native Japanese dandelion autopolyploids and their putative diploid parent species. J Plant Res 120:139–147

    PubMed  CAS  Google Scholar 

  • Hsiao C, Jacobs SWL, Chatterton NJ, Asay KH (1999) A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS). Aust Syst Bot 11:667–688

    Google Scholar 

  • Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation and coexistence of diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701

    Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J Plant Biol 47:356–360

    Google Scholar 

  • Kim S, Rayburn AL, Lee DK (2010) Genome size and chromosome analyses in prairie cordgrass. Crop Sci 50:2277–2282

    Google Scholar 

  • Kim S, Rayburn AL, Parrish A, Lee DK (2012) Cytogeographic distribution and genome size variation in prairie cordgrass (Spartina pectinata Bosc ex Link). Plant Mol Biol Rep (in press)

  • Korban SS, Wannarat W, Rayburn CM, Tatum TC, Rayburn AL (2009) Genome size and nucleotypic variation in Malus germplasm. Genome 52:148–155

    PubMed  CAS  Google Scholar 

  • Krahulcová A, Krahulec F (2000) Offspring diversity in Hieracium subgen. Pilosella (Asteraceae): new cytotypes from hybridization experiments and from open pollination. Fragm Flor Geobot 45:239–255

    Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Lewis WH (1976) Temporal adaptation correlated with ploidy in Claytonia virginica. Syst Bot 1:340–347

    Google Scholar 

  • Lumaret R (1988) Adaptive strategies and ploidy levels. Acta Oecol Oecol Plant 9:83–93

    Google Scholar 

  • Marchant CJ (1967) Evolution in Spartina (Gramineae). I. The history and morphology of the genus in Britain. J Linn Soc Bot 60:1–24

    Google Scholar 

  • Marchant CJ (1968) Evolution in Spartina (Gramineae). III. Species chromosome numbers and their taxonomic significance. J Linn Soc Bot 60:411–417

    Google Scholar 

  • Mishra MK (1997) Stomatal characteristics at different ploidy levels in Coffea L. Ann Bot (Loud) 80:689–692

    Google Scholar 

  • Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa St Coll J Sci 30:471–574

    Google Scholar 

  • Montemayor MB, Price JS, Rochefort L, Boudreau S (2008) Temporal variations and spatial patterns in saline and waterlogged peat fields. 1. Survival and growth of salt marsh graminioids. Environ Exp Bot 62:333–342

    Google Scholar 

  • Mràz P, Singliarova B, Urfus T, Krahulec F (2008) Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Ann Bot 101:59–71

    PubMed  Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378

    Google Scholar 

  • Nelson CJ, Asay KH, Sleper DA (1977) Mechanisms of canopy development of tall fescue genotypes. Crop Sci 17:449–452

    Google Scholar 

  • Nilsson E (1950) Some experiments with tetraploid tomatoes. Hereditas 36:181–204

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    PubMed  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    PubMed  CAS  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    PubMed  CAS  Google Scholar 

  • Petit C, Thompson JD, Bretagnolle F (1996) Phenotypic plasticity in relation to ploidy level and corn production in the perennial grass Arrhenatherum elatius. Can J Bot 74:1964–1973

    Google Scholar 

  • Petit C, Bretagnolle F, Felber F (1999) Evolutionary consequence of diploid–polyploid hybrid zones in wild species. Trends Ecol Evol 14:306–311

    PubMed  Google Scholar 

  • Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Google Scholar 

  • Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA 108:7096–7101

    PubMed  CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:477–501

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Google Scholar 

  • Ranney TG (2006) Polyploidy: from evolution to new plant development. Comb Proc Intl Plant Prop Soc 56:137–142

    Google Scholar 

  • Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991) The evolution of Spartina anglica C. E.Hubbard (Gramineae): origin and genetic variability. Bot J Linn Soc 43:111–126

    Google Scholar 

  • Rayburn AL, McCloskey R, Tatum TC, Bollero GA, Jeschke MR, Tranel PJ (2005) Genome size analysis of weedy Amaranthus species. Crop Sci 45:2557–2562

    CAS  Google Scholar 

  • Reeder JR (1977) Chromosome-numbers in western grasses. Am J Bot 64:102–110

    Google Scholar 

  • Sapra VT, Hughes JL, Sharma GC (1975) Frequency, size and distribution of stomata in triticale leaves. Crop Sci 15:356–358

    Google Scholar 

  • Seneca ED (1974) Germination and seedling response of Atlantic and Gulf coast populations of Spartina altinaflora. Am J Bot 58:48–55

    Google Scholar 

  • Setter TL, Schrader LE, Bingham ET (1978) Carbon dioxide exchange rates, transpiration and leaf characteristics in genetically equivalent ploidy levels in alfalfa. Crop Sci 18:327–332

    CAS  Google Scholar 

  • Shitsukawa N, Kinjo H, Takumi S, Murai K (2009) Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats. Ann Bot 104:1–9

    Google Scholar 

  • Soliman MH (1980) Ploidy and strain differences in seed germination of Glycine wightii at different pH levels. Theor Appl Genet 56:175–182

    Google Scholar 

  • Soltis PS (2005) Ancient and recent polyploidy in angiosperms. New Phytol 166:5–8

    PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    PubMed  Google Scholar 

  • Somers GR, Grant D (1981) Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel. and the likelihood of cross pollination. Am J Bot 68:6–9

    Google Scholar 

  • Souer D, Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125:733–742

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Tràvnícek P, Schönswetter P (2007) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401

    PubMed  Google Scholar 

  • Thompson LD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307

    PubMed  CAS  Google Scholar 

  • Thomson JA, Alonso A, Miguel E (2002) Clarification of the taxonomic status and relationships of Pteridium caudatum (Dennstaedtiaceae) in Central and South America. Bot J Linn Soc 140:237–248

    Google Scholar 

  • Tràvníček P, Kuàtovà B, Čurn V, Rauchovà J, Krajníkovà E, Jersàkovà J, Suda J (2011a) Remarkable coexistence of multiple cytotypes of the Gymmadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot 107:77–87

    PubMed  Google Scholar 

  • Tràvníček P, Dočkalovà Z, Rosenbaumovà R, Kubàtovà B, Szeląg Z, Chrtek J (2011b) Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in central Europe. Ann Bot 107:443–454

    PubMed  Google Scholar 

  • Warner DA, Edwards GE (1993) Effects of polyploidy on photosynthesis. Photosynth Res 35:135–147

    CAS  Google Scholar 

  • Weaver JE (1954) North American prairie. Johnson, Lincoln

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Rayburn, A.L., Boe, A. et al. Neopolyploidy in Spartina pectinata Link: 1. Morphological analysis of tetraploid and hexaploid plants in a mixed natural population. Plant Syst Evol 298, 1073–1083 (2012). https://doi.org/10.1007/s00606-012-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0617-5

Keywords

Navigation