Skip to main content
Log in

Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the \(\sigma \)-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis. Wiley, New York (1982)

    MATH  Google Scholar 

  3. Chistyakov, V.V.: On the theory of set-valued maps of bounded variation of one real variable. Sb. Math. 189, 153–176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)

    Book  MATH  Google Scholar 

  5. Eberlein, W.F.: Notes on integration I: the underlying convergence theorem. Comm. Pure Appl. Math. 10, 357–360 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gordon, R.A.: The integrals of Lebesgue, Denjoy, Perron, and Henstock. In: Graduate Studies in Mathematics. AMS, Providence (1994)

  7. Hildebrandt, T.H.: Theory of Integration. Academic Press, New York (1963)

    MATH  Google Scholar 

  8. Hönig, C.S.: The abstract Riemann–Stieltjes integral and its applications to linear differential equations with generalized boundary conditions. Notas do Instituto de Matemática e Estatística da Universidade de S. Paulo, Série de Matemática no. 1 (1973)

  9. Hönig, C.S.: Volterra Stieltjes-Integral Equations. In: Mathematics Studies, vol. 16. North Holland and American Elsevier, Amsterdam, New York (1975)

  10. Lewin, J.W.: A truly elementary approach to the bounded convergence theorem. Amer. Math. Monthly 93, 395–397 (1986)

    Article  MathSciNet  Google Scholar 

  11. Luxemburg, W.A.J.: Arzela’s dominated convergence theorem for the Riemann integral. Am. Math. Monthly 78, 970–979 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monteiro, G.A., Tvrdý, M.: On Kurzweil–Stieltjes integral in Banach space. Math. Bohem. 137, 365–381 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Monteiro, G.A., Tvrdý, M.: Generalized linear differential equations in a Banach space: continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33(1), 283–303 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  15. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  16. Saks, S.: Theory of the Integral, 2nd edn. Hafner Publishing Company, New York (1937)

    MATH  Google Scholar 

  17. Schwabik, Š.: Generalized Ordinary Differential Equations. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  18. Schwabik, Š.: Abstract Perron–Stieltjes integral. Math. Bohem. 121, 425–447 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124, 433–457 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces II. Operator valued solutions. Math. Bohem. 125, 431–454 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia and D. Reidel, Praha and Dordrecht (1979)

    MATH  Google Scholar 

  22. Tvrdý, M.: Differential and integral equations in the space of regulated functions. Mem. Differ. Equ. Math. Phys. 25, 1–104 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Tvrdý.

Additional information

Communicated by G. Teschl.

G. A. Monteiro was supported by RVO: 67985840 and by the Academic Human Resource Program of the Czech Academy of Sciences. U. M. Hanung was supported by the Grant No. 573/E4.4/K/2011 of the Ministry of Research and Technology and the Directorate General of Higher Education, Indonesia.

M. Tvrdý was supported by RVO: 67985840 and by the Grant No. 14-06958S of the Grant Agency of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes Monteiro, G., Hanung, U.M. & Tvrdý, M. Bounded convergence theorem for abstract Kurzweil–Stieltjes integral. Monatsh Math 180, 409–434 (2016). https://doi.org/10.1007/s00605-015-0774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0774-z

Keywords

Mathematics Subject Classification

Navigation