Skip to main content
Log in

Wiener’s lemma for singular integral operators of Bessel potential type

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we introduce an algebra of singular integral operators containing Bessel potentials of positive order, and show that the corresponding unital Banach algebra is an inverse-closed Banach subalgebra of \({\mathcal {B}} (L^q_w)\), the Banach algebra of all bounded operators on the weighted space \(L_w^q\), for all \(1\le q<\infty \) and Muckenhoupt \(A_q\)-weights \(w\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Baskakov, A., Krishtal, I.: Slanted matrices, Banach frames, and sampling. J. Funct. Anal. 255, 1667–1691 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balan, R.: The noncommutative Wiener lemma, linear independence, and special properties of the algebra of time-frequency shift operators. Trans. Am. Math. Soc. 360, 3921–3941 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barnes, B.A.: When is the spectrum of a convolution operator on \(L^p\) independent of \(p\)? Proc. Edinb. Math. Soc. 33, 327–332 (1990)

    Article  MATH  Google Scholar 

  4. Farrell, B., Strohmer, T.: Inverse-closedness of a Banach algebra of integral operators on the Heisenberg group. J. Oper. Theory 64, 189–205 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer-Verlag, New York (2009)

    Google Scholar 

  6. Gröchenig, K.: Wiener’s lemma: theme and variations, an introduction to spectral invariance and its applications. In: Massopust, P., Forster, B. (eds.) Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis. Birkhauser, Boston (2010)

    Google Scholar 

  7. Gröchenig, K., Klotz, A.: Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices. Constr. Approx. 32, 429–466 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gröchenig, K., Leinert, M.: Symmetry of matrix algebras and symbolic calculus for infinite matrices. Trans. Am. Math. Soc. 358, 2695–2711 (2006)

    Article  MATH  Google Scholar 

  9. Krishtal, I.: Wiener’s lemma: pictures at exhibition. Rev. Un. Mat. Argentina 52, 61–79 (2011)

    MATH  MathSciNet  Google Scholar 

  10. Rim, K.S., Shin, C.E., Sun, Q.: Stability of localized integral operators on weighted \(L^p\) spaces. Numer. Funct. Anal. Optim. 33, 1166–1193 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shin, C.E., Sun, Q.: Stability of localized operators. J. Funct. Anal. 256, 2417–2439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1971)

    Google Scholar 

  13. Sun, Q.: Wiener’s lemma for infinite matrices II. Constr. Approx. 34, 209–235 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sun, Q.: Wiener’s lemma for localized integral operators. Appl. Comput. Harmon. Anal. 25, 148–167 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359, 3099–3123 (2007)

    Article  MATH  Google Scholar 

  16. Sun, Q.: Localized nonlinear functional equations and two sampling problems in signal processing. Adv. Comput. Math. (2013). doi:10.1007/s10444-013-9314-3

  17. Tessera, R.: Left inverses of matrices with polynomial decay. J. Funct. Anal. 259, 2793–2813 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tessera, R.: The Schur algebra is not spectral in \({\cal B}(\ell ^2)\). Monatsh. Math. 164, 115–118 (2010)

    Article  MathSciNet  Google Scholar 

  19. Wiener, N.: Tauberian theorem. Ann. Math. 33, 1–100 (1932)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their comments and suggestions. The authors are partially supported by the Scientific Project of Zhejiang Provincial Science Technology Department fundeded by NSF of China (#2011C33012, Project 11071065), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0027339), and National Science Foundation (DMS-1109063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Eon Shin.

Additional information

Communicated by K. Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Q., Shin, C.E. & Sun, Q. Wiener’s lemma for singular integral operators of Bessel potential type. Monatsh Math 173, 35–54 (2014). https://doi.org/10.1007/s00605-013-0575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-013-0575-1

Keywords

Mathematics Subject Classification (2000)

Navigation