Monatshefte für Mathematik

, Volume 139, Issue 3, pp 247–257

On a Problem of D. H. Lehmer and Kloosterman Sums

  • Zhang Wenpeng

DOI: 10.1007/s00605-002-0529-5

Cite this article as:
Wenpeng, Z. Monatsh. Math. (2003) 139: 247. doi:10.1007/s00605-002-0529-5


 Let q ⩾ 3 be an odd number, a be any fixed positive integer with (a, q) = 1. For each integer b with 1 ⩽ b < q and (b, q) = 1, it is clear that there exists one and only one c with 0 < c < q such that bc ≡ a (mod q). Let N(a, q) denote the number of all solutions of the congruent equation bc ≡ a (mod q) for 1 ⩽ b, c < q in which b and c are of opposite parity, and let \(E(a, q)=N(a, q)-{1\over 2}\phi (q)\). The main purpose of this paper is to study the distribution properties of E(a, q), and to give a sharper hybrid mean value formula involving E(a, q) and Kloosterman sums.

2000 Mathematics Subject Classification: 11L05
Key words: A problem of D.H. Lehmer, error term, hybrid mean value formula

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • Zhang Wenpeng
    • 1
  1. 1.Xi’an Jiaotong University, Shaanxi, P.R. ChinaCN