Skip to main content
Log in

Profiling of oxygen in biofilms using individually addressable disk microelectrodes on a microfabricated needle

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel microelectrode array sensor was fabricated using MEMS technology on a needle, and then applied to real-time measurement of dissolved oxygen (DO) inside biofilms. The sensor consists of eleven gold disk microelectrodes, a rectangular auxiliary electrode along them, and an external and internal reference electrode. Three kinds of sensors were designed and their responses were characterized and evaluated under various conditions. The arrays exhibit a linear response to DO in the 0–8 mg·L−1 concentration range in water, high sensitivity, repeatability, and low limits of detection (<0.11 mg·L−1 of DO) and quantification (0.38 mg·L−1 DO). The sensors were validated against a commercial Clark-type microelectrode and applied to profiling of DO in a heterotrophic biofilm cultivated in a flat-plate bioreactor. It is shown that the sensor array can provide a multipoint, simultaneous snapshot profile of DO inside a biofilm with high spatial resolution due to its micrometric dimensions. We conclude that this new sensor array represents a powerful tool for sensing of DO biofilms and in numerous bioprocesses.

A microelectrode array sensor for real-time measurement of dissolved oxygen (DO) is presented for use in  multipoint and simultaneous snapshot profiling of DO in a biofilm. The sensor has been validated against a commercial Clark-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen Y (2001) Biofiltration - the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol 77:257–274. doi:10.1016/S0960-8524(00)00074-2

    Article  CAS  Google Scholar 

  2. Gavrilescu M, Macoveanu M (2000) Attached-growth process engineering in wastewater treatment. Bioprocess Eng 23:95–106

    Article  CAS  Google Scholar 

  3. Okabe S, Itoh T, Satoh H, Watanabe Y (1999) Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol 65:5107–5116

    CAS  Google Scholar 

  4. Ning Y-F, Chen Y-P, Li S et al (2012) Development of an in situ dissolved oxygen measurement system and calculation of its effective diffusion coefficient in a biofilm. Anal Methods 4:2242. doi:10.1039/c2ay25132a

    Article  CAS  Google Scholar 

  5. Zhou X-H, Liu J, Song H-M et al (2012) Estimation of heterotrophic biokinetic parameters in wastewater biofilms from oxygen concentration profiles by microelectrode. Environ Eng Sci 29:466–471. doi:10.1089/ees.2010.0456

    Article  CAS  Google Scholar 

  6. Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27. doi:10.1007/s00604-006-0688-5

    Article  CAS  Google Scholar 

  7. Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  8. Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    CAS  Google Scholar 

  9. Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. In: Marshall KC (ed) Adv Microb Ecol. Springer US, pp 293–352

  10. Paliteiro C (1994) (100)-Type behaviour of polycrystalline gold towards O2 reduction. Electrochim Acta 39:1633–1639. doi:10.1016/0013-4686(94)85147-6

    Article  CAS  Google Scholar 

  11. Jeroschewski P, Steuckart C, Eickert G, Kuhl M (1998) A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment. Aquat Microb Ecol 15:201. doi:10.3354/ame015201

    Article  Google Scholar 

  12. Hang Gao FS (2011) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 5:776. doi:10.1038/ismej.2010.166

    Article  Google Scholar 

  13. Wu C-C, Yasukawa T, Shiku H, Matsue T (2005) Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens Actuators B Chem 110:342–349. doi:10.1016/j.snb.2005.02.014

    Article  CAS  Google Scholar 

  14. Carlos de la Rosa TY (2006) Development of an automation system to evaluate the three-dimensional oxygen distribution in wastewater biofilms using microsensors. Sens Actuators B-Chem 113:47–54. doi:10.1016/j.snb.2005.02.025

    Article  Google Scholar 

  15. Zhou X-H, Qiu Y-Q, Shi H-C et al (2009) A new approach to quantify spatial distribution of biofilm kinetic parameters by in situ determination of oxygen uptake rate (OUR). Environ Sci Technol 43:757–763. doi:10.1021/es802373q

    Article  CAS  Google Scholar 

  16. Kumar A, Hille-Reichel A, Horn H et al (2012) Oxygen transport within the biofilm matrix of a membrane biofilm reactor treating gaseous toluene. J Chem Technol Biotechnol 87:751–757. doi:10.1002/jctb.3800

    Article  CAS  Google Scholar 

  17. Lee J-H, Lim T-S, Seo Y et al (2007) Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sens Actuators B Chem 128:179–185. doi:10.1016/j.snb.2007.06.008

    Article  Google Scholar 

  18. Davies TJ, Ward-Jones S, Banks CE et al (2005) The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem 585:51–62. doi:10.1016/j.jelechem.2005.07.021

    Article  CAS  Google Scholar 

  19. Menshykau D, O’Mahony AM, del Campo FJ et al (2009) Microarrays of ring-recessed disk electrodes in transient generator-collector mode: theory and experiment. Anal Chem 81:9372–9382. doi:10.1021/ac9017633

    Article  CAS  Google Scholar 

  20. Godino N, Borrisé X, Muñoz FX et al (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C 113:11119–11125. doi:10.1021/jp9031354

    Article  CAS  Google Scholar 

  21. Menshykau D, Cortina-Puig M, del Campo FJ et al (2010) Plane-recessed disk electrodes and their arrays in transient generator–collector mode: the measurement of the rate of the chemical reaction of electrochemically generated species. J Electroanal Chem 648:28–35. doi:10.1016/j.jelechem.2010.07.003

    Article  CAS  Google Scholar 

  22. Ordeig O, del Campo J, Muñoz FX et al (2007) Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19:1973–1986. doi:10.1002/elan.200703914

    Article  CAS  Google Scholar 

  23. Lanyon YH, Arrigan DWM (2007) Recessed nanoband electrodes fabricated by focused ion beam milling. Sens Actuators B Chem 121:341–347. doi:10.1016/j.snb.2006.11.029

    Article  CAS  Google Scholar 

  24. Del Campo FJ, Abad L, Illa X et al (2014) Determination of heterogeneous electron transfer rate constants at interdigitated nanoband electrodes fabricated by an optical mix-and-match process. Sens Actuators B Chem 194:86–95. doi:10.1016/j.snb.2013.12.016

    Article  Google Scholar 

  25. Laczka O, del Campo FJ, Muñoz-Pascual FX, Baldrich E (2011) Electrochemical detection of testosterone by use of three-dimensional disc-ring microelectrode sensing platforms: application to doping monitoring. Anal Chem 83:4037–4044. doi:10.1021/ac1031594

    Article  CAS  Google Scholar 

  26. Sánchez-Molas D, Esquivel JP, Sabaté N et al (2012) High aspect-ratio, fully conducting gold micropillar array electrodes: silicon micromachining and electrochemical characterization. J Phys Chem C 116:18831–18846. doi:10.1021/jp305339k

    Article  Google Scholar 

  27. Prehn R, Abad L, Sánchez-Molas D et al (2011) Microfabrication and characterization of cylinder micropillar array electrodes. J Electroanal Chem 662:361–370. doi:10.1016/j.jelechem.2011.09.002

    Article  CAS  Google Scholar 

  28. Fischer LM, Tenje M, Heiskanen AR et al (2009) Gold cleaning methods for electrochemical detection applications. Microelectron Eng 86:1282–1285. doi:10.1016/j.mee.2008.11.045

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  30. Wolff CM, Mottola HA (1978) Enzymic substrate determination in closed flow-through systems by sample injection and amperometric monitoring of dissolved oxygen levels. Anal Chem 50:94–98. doi:10.1021/ac50023a026

    Article  CAS  Google Scholar 

  31. Lewandowski Z, Beyenal H (2013) Fundamentals of biofilm research, Second Edition. CRC Press

  32. Dorado AD, Baeza JA, Lafuente J et al (2012) Biomass accumulation in a biofilter treating toluene at high loads – part 1: experimental performance from inoculation to clogging. Chem Eng J 209:661–669. doi:10.1016/j.cej.2012.08.018

    Article  CAS  Google Scholar 

  33. Del Campo FJ, Ordeig O, Vigués N et al (2007) Continuous measurement of acute toxicity in water using a solid state microrespirometer. Sens Actuators B Chem 126:515–521. doi:10.1016/j.snb.2007.03.038

    Article  Google Scholar 

  34. Murphy VG, Barr RE, Hahn AW (1976) Control of electrode aging by a periodic anodization technique. In: Grote J, Reneau D, Thews G (eds) Oxyg Transp Tissue — II. Springer US, pp 69–75

Download references

Acknowledgments

This work has been founded by projects DPI2011-28262-C04 and CTM2012-37927-C03/FEDER, financed by the Ministerio de Economía y Competitividad (Spain). AM gratefully acknowledges an FPI-2012 pre-doctoral scholarship, (it funded her PhD studies at Universitat Autònoma de Barcelona), and XG also acknowledges an FPI-UPC pre-doctoral scholarship, both from Ministerio de Economía y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Gabriel.

Additional information

Ana Moya and Xavier Guimerà authors contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya, A., Guimerà, X., del Campo, F.J. et al. Profiling of oxygen in biofilms using individually addressable disk microelectrodes on a microfabricated needle. Microchim Acta 182, 985–993 (2015). https://doi.org/10.1007/s00604-014-1405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1405-4

Keywords

Navigation