Skip to main content

Advertisement

Log in

Integration of sample pretreatment, μPCR, and detection for a total genetic analysis microsystem

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Since the emergence of lab-on-a-chip technology, a variety of chemical and biochemical assays were successfully implemented on microdevice platforms. Among the chip-based applications, genetic analysis based on the polymerase chain reaction (PCR) has been extensively developed in order to accomplish the goal of cheap, rapid, high-throughput, and point-of-care DNA testing. We are summarizing here several formats of the miniaturized PCR systems including the integration of units for sample pretreatment and downstream analytical detection. The various sections cover (a) miniaturized PCR systems, (b) integrated sample pretreatment-PCR microsystems, (c) integrated PCR-detection microsystems, and (d) integrated sample pretreatment-PCR-detection microsystems. Respective microdevices were successfully introduced recently in the form of a fully integrated microsystem for genetic analysis with sample-in-answer-out capability. Contains 120 references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  Google Scholar 

  2. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  Google Scholar 

  3. Northrup MA, Ching MT, White RM, Watson,RT (1993) DNA amplification in a microfabricated reaction chamber. Proceedings of the 7th International Conference on Solid-State Sensors and Actuators (Transducers ‘93). Yokohama, Japan, 7–10 June, pp. 924–926

  4. Wilding P, Shoffner MA, Kricka LJ (1994) PCR in a silicon microstructure. Clin Chem 40:1815–1818

    CAS  Google Scholar 

  5. Nagai H, Murakami Y, Morita Y, Yokoyama K, Tamiya E (2001) Development of a microchamber array for picoliter PCR. Anal Chem 73:1043–1047

    CAS  Google Scholar 

  6. Guttenberg Z, Mȕller H, Habermȕller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317

    CAS  Google Scholar 

  7. Neuzil P, Zhang C, Pipper J, Oh S, Zhuo L (2006) Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res 34(11):e77

    Google Scholar 

  8. Trunga NB, Saito M, Takabayashi H, Viet PH, Tamiya E, Takamura Y (2010) Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sens Actuators B Chem 149:284–290

    Google Scholar 

  9. Yu Y, Li B, Baker CA, Zhang X, Roper MG (2012) Quantitative polymerase chain reaction using infrared heating on a microfluidic chip. Anal Chem 84:2825–2829

    CAS  Google Scholar 

  10. Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T (1994) High-speed polymerase chain reaction in constant flow. Biosci Biotechnol Biochem 58:349–352

    CAS  Google Scholar 

  11. Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    CAS  Google Scholar 

  12. Schneegaß I, Bräutigam R, Köhler JM (2001) A miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1:42–49

    Google Scholar 

  13. Sun K, Yamaguchi A, Ishida Y, Matsuo S, Misawa H (2002) A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens Actuators B Chem 84:283–289

    CAS  Google Scholar 

  14. Hashimoto M, Chen P-C, Mitchell MW, Nikitopoulos DE, Soper SA, Murphy MC (2004) Rapid PCR in a continuous flow device. Lab Chip 4:638–645

    CAS  Google Scholar 

  15. Kim JA, Lee JY, Seong S, Cha SH, Lee SH, Kim JJ, Park TH (2006) Fabrication and characterization of a PDMS–glass hybrid continuous-flow PCR chip. Biochem Eng J 29:91–97

    CAS  Google Scholar 

  16. Wu W, Trinh KTL, Lee NY (2012) Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR. Analyst 137:2069–2076

    CAS  Google Scholar 

  17. Wang H, Zhang C, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes using oscillatory-flow multiplex PCR. Microchim Acta 173:503–512

    CAS  Google Scholar 

  18. Jung JH, Choi SJ, Park BH, Choi YK, Seo TS (2012) Ultrafast rotary PCR system for multiple influenza viral RNA detection. Lab Chip 12:1598–1600

    CAS  Google Scholar 

  19. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies—A Review. Nucleosides Nucleotides Nucleic Acids 27(3):224–243

    CAS  Google Scholar 

  20. Hataoka Y, Zhang L, Mori Y, Tomita N, Notomi T, Baba Y (2004) Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips. Anal Chem 76:3689–3693

    CAS  Google Scholar 

  21. Fang X, Liu Y, Kong J, Jiang X (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82:3002–3006

    CAS  Google Scholar 

  22. Gulliksen A, Solli L, Karlsen F, Rogne H, Hovig E, Nordstrøm T, Sirevåg R (2004) Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal Chem 76:9–14

    CAS  Google Scholar 

  23. Dimov IK, Garcia-Cordero JL, O’Grady J, Poulsen CR, Viguier C, Kent L, Daly P, Lincoln B, Maher M, O’Kennedy R, Smith TJ, Ricco AJ, Lee LP (2008) Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 8:2071–2078

    CAS  Google Scholar 

  24. Sato K, Tachihara A, Renberg B, Mawatari K, Sato K, Tanaka Y, Jarvius J, Nilsson M, Kitamori T (2010) Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip 10:1262–1266

    CAS  Google Scholar 

  25. Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Mȕller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, Stetten FV (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893

    CAS  Google Scholar 

  26. Kivlehan F, Mavré F, Talini L, Limoges B, March D (2011) Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids. Analyst 136:35–3642

    Google Scholar 

  27. Andresen D, Nickisch-Rosenegk MV, Bier FF (2009) Helicase dependent onchip-amplification and its use in multiplex pathogen detection. Clin Chim Acta 403:244–248

    CAS  Google Scholar 

  28. Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M (2000) Anchored multiplex amplification on a microelectronic chip array. Nat Biotechnol 18:199–204

    CAS  Google Scholar 

  29. Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295

    CAS  Google Scholar 

  30. Liao C-S, Lee G-B, Liu H-S, Hsieh T-M, Luo C-H (2005) Miniature RT–PCR system for diagnosis of RNA-based viruses. Nucleic Acids Res 33:e156

    Google Scholar 

  31. Marcus JS, Anderson WF, Quake SR (2006) Parallel picoliter RT-PCR assays using microfluidics. Anal Chem 78:956–958

    CAS  Google Scholar 

  32. Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22:1739–1748

    CAS  Google Scholar 

  33. Felbel J, Reichert A, Kielpinski M, Urban M, Henkel T, Häfner N, Dȕrst M, Weber J (2008) Reverse transcription-polymerase chain reaction (RT-PCR) in flow-through micro-reactors: thermal and fluidic concepts. Chem Eng J 135S:S298–S302

    Google Scholar 

  34. Lee SH, Kim S-W, Kang JY, Ahn CH (2008) A polymer lab-on-a-chip for reverse transcription (RT)-PCR based point-of-care clinical diagnostics. Lab Chip 8:2121–2127

    CAS  Google Scholar 

  35. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467

    CAS  Google Scholar 

  36. Sundberg SO, Wittwer CT, Gao C, Gale BK (2010) Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem 82:1546–1550

    CAS  Google Scholar 

  37. Shen F, Du W, Kreutz JE, Fok A, Ismagilov RF (2010) Digital PCR on a slipChip. Lab Chip 10:2666–2672

    CAS  Google Scholar 

  38. Gansen A, Herrick AM, Dimov IK, Lee LP, Chiu DT (2012) Digital LAMP in a sample self-digitization (SD) chip. Lab Chip 12:2247–2254

    CAS  Google Scholar 

  39. Astroga-Wells J, Swerdlow H (2003) Fluidic preconcentrator device for capillary electrophoresis of proteins. Anal Chem 75:5207–5212

    Google Scholar 

  40. Auroux P-A, Koc Y, deMello A, Manz A, Day PJR (2004) Miniaturised nucleic acid analysis. Lab Chip 4:534–546

    CAS  Google Scholar 

  41. Pipper J, Inoue M, Ng LF-P, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263

    CAS  Google Scholar 

  42. Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjorta K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab chip 9:1193–1199

    CAS  Google Scholar 

  43. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579

    CAS  Google Scholar 

  44. Beyor N, Seo TS, Liu P, Mathies RA (2008) Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 10:909–917

    CAS  Google Scholar 

  45. Liu J, Chen C-F, Chang CW, DeVoe DL (2010) Flow-through immunosensors using antibody-immobilized polymer monoliths. Biosens Bioelectron 26:182–188

    CAS  Google Scholar 

  46. Lee CJ, Jung JH, Seo TS (2012) 3D Porous sol–gel matrix incorporated microdevice for effective large volume cell sample pretreatment. Anal Chem 84:4928–4934

    CAS  Google Scholar 

  47. Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF, Norris PM, Landers JP (2002) Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23:727–733

    CAS  Google Scholar 

  48. Wu Q, Bienvenue JM, Hassan BJ, Kwok YC, Giordano BC, Norris PM, Landers JP, Ferrance JP (2006) Microchip-based macroporous silica sol–gel monolith for efficient isolation of DNA from clinical samples. Anal Chem 78:5704–5710

    CAS  Google Scholar 

  49. Melzak KA, Sherwood CS, Turner RFB, Haynes CA (1996) Driving forces for DNA adsorption to silica in perchlorate solutions. J Colloid Interface Sci 181:635–644

    CAS  Google Scholar 

  50. Min J, Kim J-H, Lee Y, Namkoong K, Im HC, Kim HN, Kim HY, Huh N, Kim YR (2011) Functional integration of DNA purification and concentration into a real time micro-PCR chip. Lab Chip 11:259–265

    CAS  Google Scholar 

  51. Karle M, Miwa J, Czilwik G, Auwarter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10:3284–3290

    CAS  Google Scholar 

  52. Park BH, Jung JH, Zhang H, Lee NY, Seo TS (2012) A rotary microsystem for simple, rapid and automatic RNA purification. Lab Chip 12:3875–3881

    CAS  Google Scholar 

  53. Jung JH, Park BH, Choi YK, Seo TS (2013) A microbead-incorporated centrifugal sample pretreatment microdevice. Lab Chip. doi:10.1039/c3lc50266j

    Google Scholar 

  54. Beyor N, Yi L, Seo TS, Mathies RA (2009) Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 81:3523–3528

    CAS  Google Scholar 

  55. Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA (2007) Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. Anal Chem 79:1881–1889

    CAS  Google Scholar 

  56. Liu P, Li X, Greenspoon SA, Scherer JR, Mathies RA (2011) Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip 11:1041–1048

    CAS  Google Scholar 

  57. Lien K-Y, Lin J-L, Liu C-Y, Lei H-Y, Lee G-B (2007) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7:868–875

    CAS  Google Scholar 

  58. Wilding P, Kricka LJ, Cheng J, Hvichia G, Shoffner MA, Fortina P (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Biochem 257:95–100

    CAS  Google Scholar 

  59. Yuen PK, Kricka LJ, Fortina P, Panaro NJ, Sakazume T, Wilding P (2001) Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Res 11:405–412

    CAS  Google Scholar 

  60. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    CAS  Google Scholar 

  61. Pipper J, Zhang Y, Neuzil P, Hsieh T-M (2008) Clockwork PCR including sample preparation. Angew chem Int Ed 47:3900–3904

    CAS  Google Scholar 

  62. Lee J-G, Cheong KH, Huh N, Kim S, Choi J-W, Ko C (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 6:886–895

    CAS  Google Scholar 

  63. Cheong KH, Yi DK, Lee J-G, Park J-M, Kim MJ, Edel JB, Ko C (2008) Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab Chip 8:810–813

    CAS  Google Scholar 

  64. Pasquardini L, Potrich C, Quaglio M, Lamberti A, Guastella S, Lunelli L, Cocuzza M, Vanzetti L, Pirri CF, Pederzolli C (2011) Solid phase DNA extraction on PDMS and direct amplification. Lab Chip 11:4029–4035

    CAS  Google Scholar 

  65. Bienvenue JM, Legendre LA, Ferrance JP, Landers JP (2010) An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci Int-Gen 4:178–186

    CAS  Google Scholar 

  66. Legendre LA, Bienvenue JM, Roper MG, Ferrance JP, Landers JP (2006) A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal Chem 78:1444–1451

    CAS  Google Scholar 

  67. Cady NC, Stelick S, Kunnavakkam MV, Batt CA (2005) Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sens Actuat B 107:332–341

    CAS  Google Scholar 

  68. Oblath EA, Henley WH, Alarie JP, Ramsey JM (2013) A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 13:1325–1332

    CAS  Google Scholar 

  69. Yager P, Edwards T, Fu E, Helton K, Nelson K (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    CAS  Google Scholar 

  70. Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    CAS  Google Scholar 

  71. Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    CAS  Google Scholar 

  72. West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80:4403–4419

    CAS  Google Scholar 

  73. Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic and field. Anal Chem 85:451–472

    CAS  Google Scholar 

  74. Dolnik V, Liu S, Jovanovich S (2000) Capillary electrophoresis on microchip. Electrophoresis 21:41–54

    CAS  Google Scholar 

  75. Effenhauser CS, Bruin GJM, Paulus A, Ehrat M (1997) Integrated capillary electrophoresis on flexible silicon microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem 69:3451–3457

    CAS  Google Scholar 

  76. Chen Y, Choi JY, Choi SJ, Seo TS (2010) Sample stacking capillary electrophoretic microdevice for highly sensitive mini Y short tandem repeat genotyping. Electrophoresis 31:2974–2980

    CAS  Google Scholar 

  77. Paegel BM, Emrich CA, Wedemkayer GJ, Scherer JR, Mathies RA (2002) High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci U S A 99:574–579

    CAS  Google Scholar 

  78. Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens Actuators B-Chem 1:249–255

    CAS  Google Scholar 

  79. Woolley AT, Hadley D, Landre P, deMello AJ, Mathies RA, Northrup MA (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 68:4081–4086

    CAS  Google Scholar 

  80. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72:2995–3000

    CAS  Google Scholar 

  81. Prakash R, Kaler KVIS (2007) An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluid Nanofluid 3:177–187

    CAS  Google Scholar 

  82. Kaigala GV, Hoang VN, Backhouse CJ (2008) Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis. Lab Chip 8:1071–1078

    CAS  Google Scholar 

  83. Huang F-C, Liao C-S, Lee G-B (2006) An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection. Electrophoresis 27:3297–3305

    CAS  Google Scholar 

  84. Lagally ET, Medintz I, Mathies RA (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73:565–570

    CAS  Google Scholar 

  85. Lagally ET, Emrich CA, Mathies RA (2001) Fully integrated RCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 1:102–107

    CAS  Google Scholar 

  86. Lagally ET, Scherer JR, Blazej RG, Toriello NM, Diep BA, Ramchandani M, Sensabaugh GF, Riley LW, Mathies RA (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 76:3162–3170

    CAS  Google Scholar 

  87. Toriello NM, Liu CN, Mathies RA (2006) Multichannel reverse transcription-polymerase chain reaction microdevice for rapid gene expression and biomarker analysis. Anal Chem 78:7997–8003

    CAS  Google Scholar 

  88. Thaitrong N, Toriello NM, Bueno ND, Mathies RA (2009) Polymerase chain reaction-capillary electrophoresis genetic analysis microdevice with in-line affinity capture sample injection. Anal Chem 81:1371–1377

    CAS  Google Scholar 

  89. Choi JY, Kim YT, Ahn J, Kim KS, Gweon D-G, Seo TS (2012) Integrated allele-specific polymerase chain reaction-capillary electrophoresis microdevice for single nucleotide polymorphism genotyping. Biosens Bioelectron 35:327–334

    CAS  Google Scholar 

  90. Koh CG, Tan W, Zhao M, Ricco AJ, Fan ZH (2003) Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal Chem 75:4591–4598

    CAS  Google Scholar 

  91. Kim YT, Choi JY, Chen Y, Seo TS (2013) Integrated slidable and valveless polymerase chain reaction-capillary electrophoresis microdevice for pathogen detection. RSC Adv 3:8461–8467

    CAS  Google Scholar 

  92. Chen L, Manz A, Day PJR (2007) Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7:1413–1423

    CAS  Google Scholar 

  93. Zhang R, Gong H-Q, Zen X, Lou CP, Sze CC (2013) A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA form low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay. Anal Chem 85:1484–1491

    CAS  Google Scholar 

  94. Hashimoto M, Barany F, Soper SA (2006) Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens Bioelectron 21:1915–1923

    CAS  Google Scholar 

  95. Anderson RC, Su X, Bogdan GJ, Fenton J (2000) A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 28:e60

    CAS  Google Scholar 

  96. Trau D, Lee TMH, Lao AIK, Lenigk R, Hsing I-M, Ip NY, Carles MC, Sucher NJ (2002) Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray. Anal Chem 74:3168–3173

    CAS  Google Scholar 

  97. Liu Y, Rauch CB, Stevens RL, Lenigk R, Yang J, Rhine DB, Grodzinski P (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74:3063–3070

    CAS  Google Scholar 

  98. Hashimoto M, Hupert ML, Murphy MC, Soper SA (2005) Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations. Anal Chem 77:3243–3255

    CAS  Google Scholar 

  99. Donhause SC, Niessner R, Seidel M (2011) Sensitive quantification of Escherichia coli O157:H7, Salmonella enterica and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem 83:3153–3160

    Google Scholar 

  100. Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A (2011) A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip 11:1457–1463

    CAS  Google Scholar 

  101. Choi JY, Kim YT, Byun J-Y, Ahn J, Chung S, Gweon D-G, Kim M-G, Seo TS (2012) An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing. Lab Chip 12:5146–5154

    CAS  Google Scholar 

  102. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immune)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582

    CAS  Google Scholar 

  103. Wang J, Chen Z, Corstjens PLAM, Mauk MG, Bau HH (2006) A disposable microfluidic cassette for DNA amplification and detection. Lab Chip 6:46–53

    Google Scholar 

  104. Kim YT, Chen Y, Choi JY, Kim W-J, Dae H-M, Jung J, Seo TS (2012) Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosens Bioelectron 33:88–94

    CAS  Google Scholar 

  105. Lee S-Y, Huang J-G, Chuang T-L, Sheu J-C, Chuang Y-K, Holl M, Meldrum DR, Lee C-N, Lin C-W (2008) compact optical diagnostic device for isothermal nucleic acids amplification. Sens Actuators B-Chem 133:493–501

    CAS  Google Scholar 

  106. Fang X, Chen H, Xu L, Jiang X, Wu W, Kong J (2012) A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab Chip 12:1495–1499

    CAS  Google Scholar 

  107. Pal R, Yang M, Lin R, Johnson BN, Srivastava N, Razzacki SZ, Chomistek KJ, Heldsinger DC, Haque RM, Ugaz VM, Thwar PK, Chen Z, Alfano K, Yim MB, Krishnan M, Fuller AO, Larson RG, Burke DT, Burns MA (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5:1024–1032

    CAS  Google Scholar 

  108. Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, Hughes MA, Hewlett EL, Merkel TD, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci U S A 103:19272–19277

    CAS  Google Scholar 

  109. Sauer-Budge AF, Mirer P, Chatterjee A, Klapperich CM, Chargin D, Sharon A (2009) Low cost and manufacturable complete microTAS for detecting bacteria. Lab Chip 9:2803–2810

    CAS  Google Scholar 

  110. Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, Nordquist A, Lenigk R, Estes MD, Haley JP, McAlister CR, Chen X, Brooks C, Smith S, Elliott K, Koumi P, Zenhausern F, Tully G (2010) Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem 82:6991–6999

    CAS  Google Scholar 

  111. Chen D, Mauk M, Qiu X, Liu C, Kim J, Ramprasad S, Ongagna S, Abrams WR, Malamud D, Corstjens PLAM, Bau HH (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12:705–719

    Google Scholar 

  112. Ferguson BS, Buchsbaum SF, Wu T-T, Hsieh K, Xiao Y, Sun R, Soh HT (2011) Genetic analysis of H1N1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics. J Am Chem Soc 133:9129–9135

    CAS  Google Scholar 

  113. White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, Piret J, Aparicio S, Hansen CL (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci U S A 108:13999–14004

    CAS  Google Scholar 

  114. Petralia S, Verardob R, Klaric E, Cavallaro S, Alessi E, Schneider C (2012) Check system: a highly integrated silicon Lab-on-Chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sens Actuators B: Chem. doi:10.1016/j.snb.2012.09.068

    Google Scholar 

  115. Jha SK, Chand R, Han D, Jang Y-C, Ra G-S, Kim JS, Nahm B-H, Kim Y-S (2012) An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Lab Chip 12:4455–4464

    CAS  Google Scholar 

  116. Liu D, Liang G, Zhang Q, Chen B (2013) Detection of mycobacterium tuberculosis using a capillary-array microsystem with integrated DNA Extraction, loop-mediated isothermal amplification, and fluorescence detection. Anal Chem 85:4698–4704

    CAS  Google Scholar 

  117. Shaw KJ, Joyce DA, Docker PT, Dyer CE, Greenway GM, Greenman J, Haswell SJ (2011) Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Lab Chip 11:443–448

    CAS  Google Scholar 

  118. Docker PT, Baker J, Haswell SJ (2013) Fast track DNA analysis suite for human identification. PeerJ PrePrints. doi:10.7287/peerj.preprints.6

    Google Scholar 

  119. Jung JH, Park BH, Choi SJ, Seo TS (2012) Fully integrated rotary genetic analysis system. In Proceedings 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012), Okinawa, Japan pp.1966–1968

  120. Strohmeier O, Kanat B, Bär D, Patel P, Drexler J, Weidmann M, Oordt TV, Roth G, Mark D, Zengerle R, Stetten FV (2012) DNA based sample to answer detection of bacterial pathogens on a centrifugal microfluidic foil cartridge. In Proceedings 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012), Okinawa, Japan, pp.779–781

Download references

Acknowledgment

This work was supported by the Korea CCS R&D Center (2013M1A8A1040878), by the Advanced Biomass R&D Center (ABC) funded by the Ministry of Education, Science and Technology (2011–0031357), and the research project for practical use and advancement of forensic DNA analysis of Supreme Prosecutors’ Office, Republic of Korea (1333304, 2012)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Seok Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, B.H., Kim, Y.T., Jung, J.H. et al. Integration of sample pretreatment, μPCR, and detection for a total genetic analysis microsystem. Microchim Acta 181, 1655–1668 (2014). https://doi.org/10.1007/s00604-013-1128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1128-y

Keywords

Navigation