Skip to main content
Log in

On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization

  • Original Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a lab-on-a-chip approach for on-site detection of Phytophthora species that allows visual signal readout. The results demonstrate the significance of single-stranded DNA (ssDNA) generation in terms of improving the intensity of the hybridization signal and to improve the reliability of the method. Conventional PCR with subsequent heat denaturation, sodium hydroxide-based denaturation, lambda exonuclease digestion and two asymmetric PCR methods were investigated for the species P. fragariae, P. kernoviae, and P. ramorum. The positioning of the capture probe within the amplified yeast GTP-binding protein (YPT1) target DNA was also of interest because it significantly influences the intensity of the signal. Statistical tests were used to validate the impact of the ssDNA generation methods and the capture-target probe position. The single-stranded target DNA generated by Linear-After-The-Exponential PCR (LATE-PCR) was found to produce signal intensities comparable to post-PCR exonuclease treatment. The LATE-PCR is the best method for the on-site detection of Phytophthora because the enzymatic digestion after PCR is more laborious and time-consuming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul

    Google Scholar 

  2. Brasier C, Webber J (2010) Plant pathology sudden larch death. Nature 466(7308):824–825. doi:10.1038/466824a

    Article  CAS  Google Scholar 

  3. O’Brien PA, Williams N, Hardy GES (2009) Detecting Phytophthora. Crit Rev Microbiol 35(3):169–181. doi:10.1080/10408410902831518

    Article  Google Scholar 

  4. Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217. doi:10.1016/j.bios.2006.06.036

    Article  CAS  Google Scholar 

  5. Martin FN, Abed ZG, Baldi Y, Ivors K (2012) Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Dis 96(8):1080–1103. doi:10.1094/pdis-12-11-1036-fe

    Article  Google Scholar 

  6. Julich S, Riedel M, Kielpinski M, Urban M, Kretschmer R, Wagner S, Fritzsche W, Henkel T, Moller R, Werres S (2011) Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosens Bioelectron 26(10):4070–4075. doi:10.1016/j.bios.2011.03.035

    Article  CAS  Google Scholar 

  7. Seise B, Brinker A, Kretschmer R, Schwarz M, Rudolph B, Kaulfuss T, Urban M, Henkel T, Popp J, Moeller R (2011) Chip-based detection system for the on-site analysis of animal diseases. Eng Life Sci 11(2):148–156. doi:10.1002/elsc.201000046

    Article  CAS  Google Scholar 

  8. Schueler T, Asmus T, Fritzsche W, Moeller R (2009) Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA. Biosens Bioelectron 24(7):2077–2084. doi:10.1016/j.bios.2008.10.028

    Article  CAS  Google Scholar 

  9. Schueler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Moeller R, Popp J (2009) A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Biosens Bioelectron 25(1):15–21. doi:10.1016/j.bios.2009.05.040

    Article  CAS  Google Scholar 

  10. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30(1):17–32. doi:10.1006/fgbi.2000.1202

    Article  CAS  Google Scholar 

  11. Schena L, Cooke DEL (2006) Assessing the potential of regions of the nuclear and mitochondrial genome to develop a “molecular tool box” for the detection and characterization of Phytophthora species. J Microbiol Methods 67(1):70–85. doi:10.1016/j.mimet.2006.03.003

    Article  CAS  Google Scholar 

  12. Robideau GP, de Cock AWAM, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Desaulniers N, Eggertson QA, Gachon CMM, Hu C-H, Kuepper FC, Rintoul TL, Sarhan E, Verstappen ECP, Zhang Y, Bonants PJM, Ristaino JB, Levesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11(6):1002–1011. doi:10.1111/j.1755-0998.2011.03041.x

    Article  CAS  Google Scholar 

  13. Martin FN, Tooley PW (2003) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95(2):269–284. doi:10.2307/3762038

    Article  CAS  Google Scholar 

  14. Blair JE, Coffey MD, Park S-Y, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 45(3):266–277. doi:10.1016/j.fgb.2007.10.010

    Article  CAS  Google Scholar 

  15. Chen W, Djama ZR, Coffey MD, Martin FN, Bilodeau GJ, Radmer L, Denton G, Levesque CA (2013) Membrane-based oligonucleotide array developed from multiple markers for the detection of many Phytophthora species. Phytopathology 103(1):43–54. doi:10.1094/phyto-04-12-0092-r

    Article  CAS  Google Scholar 

  16. Brinker A, Schulze H, Bachmann T, Moeller R (2010) Lambda exonuclease pre-treatment for improved DNA-chip performance depends on the relative probe-target position. Biosens Bioelectron 26(2):898–902. doi:10.1016/j.bios.2010.07.011

    Article  CAS  Google Scholar 

  17. Marimuthu C, Tang T-H, Tominaga J, Tan S-C, Gopinath SCB (2012) Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137(6):1307–1315. doi:10.1039/c2an15905h

    Article  CAS  Google Scholar 

  18. Wilson R (2011) Preparation of single-stranded DNA from PCR products with streptavidin magnetic beads. Nucleic Acid Ther 21(6):437–440. doi:10.1089/nat.2011.0322

    Article  CAS  Google Scholar 

  19. Korpela J (1984) Avidin, a high-affinity biotin-binding protein, as a tool and subject of biological-research. Med Biol 62(1):5–26

    CAS  Google Scholar 

  20. Boissinot K, Huletsky A, Peytavi R, Turcotte S, Veillette V, Boissinot M, Picard FJ, Martel EA, Bergeron MG (2007) Rapid exonuclease digestion of PCR-amplified targets for improved microarray hybridization. Clin Chem 53(11):2020–2023. doi:10.1373/clinchem.2007.091157

    Article  CAS  Google Scholar 

  21. Poddar SK (2000) Symmetric vs asymmetric PCR and molecular beacon probe in the detection of a target gene of adenovirus. Mol Cell Probes 14(1):25–32. doi:10.1006/mcpr.1999.0278

    Article  CAS  Google Scholar 

  22. Pierce KE, Sanchez JA, Rice JE, Wangh LJ (2005) Linear-after-the-exponential (LATE)-PCR: primer design criteria for high yields of specific singlestranded DNA and improved real-time detection. Proc Natl Acad Sci U S A 102(24):8609–8614. doi:10.1073/pnas.2051946102

    Article  CAS  Google Scholar 

  23. Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD (2005) Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 33(8):e70. doi:10.1093/nar/gni069

  24. Rice JE, Sanchez JA, Pierce KE, Reis AH Jr, Osborne A, Wangh LJ (2007) Monoplex/multiplex linear-after-the-exponential-PCR assays combined with PrimeSafe and Dilute-‘N’-Go sequencing. Nat Protoc 2(10):2429–2438. doi:10.1038/nprot.2007.362

    Article  CAS  Google Scholar 

  25. Sanchez JA, Pierce KE, Rice JE, Wangh LJ (2009) Linear-after-the-exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis (vol 101, pg 1933, 2004). Proc Natl Acad Sci U S A 106(6):2083. doi:10.1073/pnas.0811993106

    CAS  Google Scholar 

  26. Peytavi R, Tang LY, Raymond FR, Boissinot K, Bissonnette L, Boissinot M, Picard FJ, Huletsky A, Ouellette M, Bergeron MG (2005) Correlation between microarray DNA hybridization efficiency and the position of short capture probe on the target nucleic acid. Biotechniques 39(1):89–96. doi:10.2144/05391rr01

    Article  CAS  Google Scholar 

  27. Stedtfeld RD, Wick LM, Baushke SW, Tourlousse DM, Herzog AB, Xia Y, Rouillard JM, Klappenbach JA, Cole JR, Gulari E, Tiedje JM, Hashsham SA (2007) Influence of dangling ends and surface-proximal tails of targets on probe-target duplex formation in 16S rRNA gene-based diagnostic arrays. Appl Environ Microbiol 73(2):380–389. doi:10.1128/aem.01785-06

    Article  CAS  Google Scholar 

  28. Werres S, Marwitz R, WA MI’tv, De Cock AWAM, Bonants PJM, De Weerdt M, Themann K, Ilieva E, Baayen RP (2001) Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol Res 105(10):1155–1165. doi:10.1016/S0953-7562(08)61986-3

    Article  CAS  Google Scholar 

  29. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465. doi:10.1073/pnas.95.4.1460

    Article  CAS  Google Scholar 

  30. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. doi:10.1093/nar/gkg595

    Article  CAS  Google Scholar 

  31. Schueler T, Nykytenko A, Csaki A, Moeller R, Fritzsche W, Popp J (2009) UV cross-linking of unmodified DNA on glass surfaces. Anal Bioanal Chem 395(4):1097–1105. doi:10.1007/s00216-009-3045-9

    Article  CAS  Google Scholar 

  32. Schena L, Duncan JM, Cooke DEL (2008) Development and application of a PCR-based ‘molecular tool box’ for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol 57(1):64–75. doi:10.1111/j.1365-3059.2007.01689.x

    CAS  Google Scholar 

  33. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi:10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  34. RDC Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  35. McCullagh P, Nelder J (1989) Generalized Linear Models, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  36. Dormann CF (2013) Parametrische Statistik—Verteilung, maximum likelyhood und GLM in R. Statistik und ihre Anwendungen. Springer, Berlin Heidelberg

    Google Scholar 

  37. Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  38. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi:10.1002/bimj.200810425

    Article  Google Scholar 

  39. Protozanova E, Yakovchuk P, Frank-Kamenetskii MD (2004) Stacked-unstacked equilibrium at the nick site of DNA. J Mol Biol 342(3):775–785. doi:10.1016/j.jmb.2004.07.075

    Article  CAS  Google Scholar 

  40. Rouillard JM, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31(12):3057–3062. doi:10.1093/nar/gkg426

    Article  CAS  Google Scholar 

  41. Khandelwal G, Bhyravabhotla J (2010) A Phenomenological Model for Predicting Melting Temperatures of DNA Sequences. PLoS ONE 5(8):e12433. doi:10.1371/journal.pone.0012433

  42. Kujau MJ, Wolfl S (1997) Efficient preparation of single-stranded DNA for in vitro selection. Mol Biotechnol 7(3):333–335. doi:10.1007/bf02740823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carsten F. Dormann for giving valuable support in “R” statistics and Everett Hansen for critical reading of the manuscript. The project is supported by funds of the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabine Werres or Karina Weber.

Additional information

Lydia Schwenkbier and Stephan König contribute equally to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

List of sequences, isolate numbers and sequence gene bank accession numbers for in-silico analysis of the COI, ITS, and YPT1 regions. (DOCX 27 kb)

Supplement 1

FASTA alignment for COI (TXT 38 kb)

Supplement 2

FASTA alignment for ITS (TXT 50 kb)

Supplement 3

FASTA alignment for YPT1 (TXT 31 kb)

Supplement 4

YPT1 alignment used for species-specific probe generation (TXT 415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenkbier, L., König, S., Wagner, S. et al. On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization. Microchim Acta 181, 1669–1679 (2014). https://doi.org/10.1007/s00604-013-1107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1107-3

Keywords

Navigation