, Volume 180, Issue 1-2, pp 137-143

Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We report that fluorescent carbon nanodots (C-dots) can act as an optical probe for quantifying Sn(II) ions in aqueous solution. C-dots are synthesized by carbonization and surface oxidation of preformed sago starch nanoparticles. Their fluorescence is significantly quenched by Sn(II) ions, and the effect can be used to determine Sn(II) ions. The highest fluorescence intensity is obtained at a concentration of 1.75 mM of C-dots in aqueous solution. The probe is highly selective and hardly interfered by other ions. The quenching mechanism appears to be predominantly of the static (rather than dynamic) type. Under optimum conditions, there is a linear relationship between fluorescence intensity and Sn(II) ions concentration up to 4 mM, and with a detection limit of 0.36 μM.

Figure

Highly fluorescent carbon nanodots (CDs) were synthesized from preformed starch nanoparticles via a green synthetic method. The potential application of these CDs as a sensing probe for Sn(II) ions were evaluated. Our studies showed that CDs are highly sensitive and selective towards Sn(II) detection in aqueous system.