, Volume 180, Issue 1-2, pp 117-125
Date: 15 Nov 2012

Preparation of liposomes loaded with quantum dots, fluorescence resonance energy transfer studies, and near-infrared in-vivo imaging of mouse tissue

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We report on a simple, fast and convenient method to engineer lipid vesicles loaded with quantum dots (QDs) by incorporating QDs into a vesicle-type of lipid bilayer using a phase transfer reagent. Hydrophilic CdTe QDs and near-infrared (NIR) QDs of type CdHgTe were incorporated into liposomes by transferring the QDs from an aqueous solution into chloroform by addition of a surfactant. The QD-loaded liposomes display bright fluorescence, and the incorporation of the QDs into the lipid bilayer leads to enhanced storage stability and reduced sensitivity to UV irradiation. The liposomes containing the QD were applied to label living cells and to image mouse tissue in-vivo using a confocal laser scanning microscope, while NIR images of mouse tissue were acquired with an NIR fluorescence imaging system. We also report on the fluorescence resonance energy transfer (FRET) that occurs between the CdTe QDs (the donor) and the CdHgTe QDs (the acceptor), both contained in liposomes. Based on these data, this NIR FRET system shows promise as a tool that may be used to study the release of drug-loaded liposomes and their in vivo distribution.


The lipid-QDs vesicles engineered by incorporation of hydrophilic QDs via efficient phase transfer reagent were used for cell labeling and NIR imaging in vivo. And a novel fluorescence resonance energy transfer system between different QDs in the lipid bilayer was established.