Skip to main content
Log in

Luminescent probes for detection and imaging of hydrogen peroxide

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The relevance of hydrogen peroxide (H2O2) in biological processes has been underestimated for a long time. In recent years, various reports showed that H2O2 not only acts as a cytotoxic compound appearing in the course of oxidative stress, but also functions as an important signaling molecule. Fluorescent probes (or indicators) and nanoparticles that respond selectively to hydrogen peroxide can be applied for intracellular measurements or in vivo imaging, and are superior to electrochemical methods, e.g. in terms of spatial resolution. In contrast to previous reviews that concentrated on the adoption of different probes for certain applications, this survey highlights the basic principles of different probes in terms of their chemical design, structures and functionalities. Thus, the probes are classified according to the underlying reaction mechanism: oxidation, hydrolysis, photoinduced electron transfer, and lanthanide complexation. Other assays are based on fluorescent proteins and nanoparticles, and chemi- or bioluminescent reagents. We confine this review to probes that display a more or less distinct selectivity to hydrogen peroxide. Indicators responding to reactive oxygen species (ROS) in general, or to particular other ROS, are not covered. Finally, we briefly discuss future trends and perspectives of these luminescent reporters in biomedical research and imaging.

Luminescent probes and nanosensors are promising tools to study the role of H2O2 in cellular signal transduction processes, oxidative stress and wound healing. Advanced cell-penetrating probes paved the way to image intracellular concentrations of H2O2. This review highlights the development in the design of H2O2-sensitive probes over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Beckman KB, Ames BN (1998) The free radical theory of ageing matures. Physiol Rev 78:547–581

    CAS  Google Scholar 

  2. Giorgio M, Trinel M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  CAS  Google Scholar 

  3. Rhee SG (2006) Cell signaling. H2O2 a necessary evil for cell signaling. Science 312:1882–1883

    Article  Google Scholar 

  4. D’Autreaux TMB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  CAS  Google Scholar 

  5. Mohazzab AK, Kaminski PM, Fayngersh RP, Wolin MS (1996) Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide. Am J Physiol Heart Circ Physiol 270:1044–1053

    Google Scholar 

  6. Rojkind M, Dominguez-Rosales JA, Nieto N, Greenwel P (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872–1891

    Article  CAS  Google Scholar 

  7. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    Article  CAS  Google Scholar 

  8. Wentworth P Jr, Jones LH, Wentworth AD, Zhu X, Larsen NA, Wilson IA, Xu X, Goddard WA, Janda KD, Eschenmoser A, Lerner RA (2001) Antibody catalysis of the oxidation of water. Science 293:1806–1811

    Article  CAS  Google Scholar 

  9. Nathan C (2002) Catalytic antibody bridges innate and adaptive immunity. Science 298:2143–2144

    Article  CAS  Google Scholar 

  10. Eligini S, Arenaz I, Barbieri SS (2009) Cyclooxygenase-2 mediates hydrogen peroxide-induced wound repair in human endothelial cells. Free Radic Biol Med 46:1428–1436

    Article  CAS  Google Scholar 

  11. Roy S, Khanna S, Nallu K, Hunt TK, Sen CK (2006) Dermal wound healing is subject to redox control. Mol Ther 13:211–220

    Article  CAS  Google Scholar 

  12. Sen CK, Khanna S, Babior BM, Hunt TK, Ellison EC, Roy S (2002) Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem 277:33284–33290

    Article  CAS  Google Scholar 

  13. Kumin A, Schafer M, Epp N et al (2007) Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J Cell Biol 179:747–760

    Article  CAS  Google Scholar 

  14. Kumin A, Huber C, Rulicke T, Wolf E, Werner S (2006) Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol 169:1194–1205

    Article  CAS  Google Scholar 

  15. Chung LY, Schmidt RJ, Hamlyn PF, Sagar BF, Andrews AM, Turner TD (1998) Biocompatibility of potential wound management products: hydrogen peroxide generation by fungal chitin/chitosans and their effects on the proliferation of murine L929 fibroblasts in culture. J Biomed Mater Res 39:300–307

    Article  CAS  Google Scholar 

  16. Bae YS, Kang SW, Seo MS, Baines IC, Teklei E, Chocki PB, Rhee SG (1997) Epidermal growth factor induced generation of hydrogen peroxide. J Biol Chem 272:217–221

    Article  CAS  Google Scholar 

  17. Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signaling 11:1313–1333

    Article  CAS  Google Scholar 

  18. Ushio-Fukai M (2009) Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signaling 11:1289–1299

    Article  CAS  Google Scholar 

  19. Mathay C, Giltaire S, Minner F, Bera E, Herin M, Poumay Y (2008) Heparin-binding EGF-like growth factor is induced by disruption of lipid rafts and oxidative stress in keratinocytes and participates in the epidermal response to cutaneous wounds. J Invest Dermatol 128:717–727

    Article  CAS  Google Scholar 

  20. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999

    Article  CAS  Google Scholar 

  21. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  Google Scholar 

  22. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  Google Scholar 

  23. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  CAS  Google Scholar 

  24. Thomas GW, Rael LT, Bar-Or R, Shimonkevitz R, Mains CW, Slone DS, Craun ML, Bar-Or D (2009) Mechanisms of delayed wound healing by commonly used antiseptics. J Trauma 66:82–91

    Article  CAS  Google Scholar 

  25. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    Article  CAS  Google Scholar 

  26. Schäferling M, Wu M, Wolfbeis OS (2004) Time-resolved imaging of glucose. J Fluoresc 14:561–568

    Article  Google Scholar 

  27. Mascini M, Moscone D (1986) Amperometric acetylcholine and choline sensors with immobilized enzymes. Anal Chim Acta 179:439–444

    Article  CAS  Google Scholar 

  28. Moody GJ, Sanghera GS, Thomas JDR (1986) Modified platinum wire glucose oxidase amperometric electrode. Analyst 111:1235–1238

    Article  CAS  Google Scholar 

  29. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  30. Lobnik A, Cajlakovic M (2001) Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sens Actuators B 74:194–199

    Article  Google Scholar 

  31. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    CAS  Google Scholar 

  32. Gallati H (1977) Aktivitätsbestimmung von Peroxidase mit Hilfe des Trinder-Reagenz. J Clin Chem Clin Biochem 15:699–793

    CAS  Google Scholar 

  33. Mizoguchi M, Ishiyama M, Shiga M (1998) Water-soluble chromogenic reagent for colorimetric detection of hydrogen peroxide–an alternative to 4-aminoantipyrine working at a long wavelength. Anal Commun 35:71–74

    Article  CAS  Google Scholar 

  34. Schindler J, Childs R, Bardsley W (1976) Peroxidase from human cervical mucus. Eur J Biochem 65:325–331

    Article  Google Scholar 

  35. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Meth 38:161–170

    Article  CAS  Google Scholar 

  36. Gay C, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284:217–220

    Article  CAS  Google Scholar 

  37. Schreml S, Landthaler M, Schäferling M, Babilas P (2011) A new star at the H2O2rizon of wound healing? Exp Dermatol 20:229–231

    Article  CAS  Google Scholar 

  38. Soh N (2006) Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 386:532–543

    Article  CAS  Google Scholar 

  39. Wardmann P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls and prospects. Free Radical Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  40. Gomes A, Fernandes E, Lima JLFC (2005) Fluorescent probes used for the detection of reactive oxygen species. J Biochem Biophys Meth 65:45–80

    Article  CAS  Google Scholar 

  41. Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside cells. Mol Cells 29:539–549

    Article  CAS  Google Scholar 

  42. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898

    Article  CAS  Google Scholar 

  43. Yao D, Vlessidis AG, Evmiridis NP (2004) Determination of nitric oxide in biological samples. Microchim Acta 147:1–20

    Article  CAS  Google Scholar 

  44. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A Stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  Google Scholar 

  45. See: www.invitrogen.com; The Molecular Probes® Handbook—A Guide to Fluorescent Probes and Labeling Technologies, 11 th Edition

  46. Royall JM, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  CAS  Google Scholar 

  47. Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5

    Article  CAS  Google Scholar 

  48. Keston AS, Brandt R (1965) Synthesis of diacetyldichlorofluorescin: A stable reagent for fluorometric analysis. Anal Biochem 11:6–9

    Article  Google Scholar 

  49. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorfluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  Google Scholar 

  50. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide: role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  Google Scholar 

  51. Palomero J, Pye D, Kabayo T, Spiller DG, Jackson MJ (2008) In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibers by real time fluorescence microscopy. Antioxid Redox Signaling 10:1463–1474

    Article  CAS  Google Scholar 

  52. Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S (2002) FEBS Lett 511:21–27

    Article  CAS  Google Scholar 

  53. Kim G, Lee YEK, Xu H, Philbert MA, Kopelman R (2010) Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside living cells. Anal Chem 82:2165–2169

    Article  CAS  Google Scholar 

  54. Kim SH, Kim B, Yadavalli VK, Pishko MV (2005) Anal Chem 77:6828–6833

    Article  CAS  Google Scholar 

  55. Poulsen AK, Scharff-Poulsen AM, Olsen LF (2007) Anal Biochem 366:29–36

    Article  CAS  Google Scholar 

  56. Ruch W, Cooper PH, Baggiolini M (1983) Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J Immunol Meth 63:347–357

    Article  CAS  Google Scholar 

  57. Donahue WF (1998) Interference in fluorometric hydrogen peroxide determination using scopoletin–horseradish peroxidase. Environ Toxicol Chem 17:783–787

    CAS  Google Scholar 

  58. Cayman Chemical, Ann Arbor, MI, USA, see: www.caymanchem.com

  59. Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K (2004) Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew Chem 116:2443–2445, Angew Chem Int Ed 43:2389–2391

    Article  Google Scholar 

  60. Maeda H (2008) Which are you watching, an individual reactive oxygen species or total oxidative stress? Ann NY Acad Sci 1130:149–156

    Article  CAS  Google Scholar 

  61. Maeda H, Yamamoto K, Nomura Y, Kohno I, Hafsi L, Ueda N, Yoshida S, Fukuda M, Fukuyasu Y, Yamauchi Y, Itoh N (2005) A design of fluorescent probes for superoxide based on a nonredox mechanism. J Am Chem Soc 127:68–69

    Article  CAS  Google Scholar 

  62. Gong X, Li Q, Xu K, Liu X, Li H, Chen Z, Tong L, Tang B, Zhong H (2009) A new route for simple and rapid determination of hydrogen peroxide in RAW264.7 macrophages by microchip electrophoresis. Electrophoresis 30:1983–1990

    Article  CAS  Google Scholar 

  63. Xu K, Tang B, Huang H, Yang G, Chen P, Li P, An L (2005) Strong red fluorescent probes suitable for detecting hydrogen peroxide generated by mice peritoneal macrophages. Chem Commun 5974–5976

  64. Miller EW, Chang CJ (2007) Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr Opin Chem Biol 11:620–625

    Article  CAS  Google Scholar 

  65. Zhao W (2009) Lighting up H2O2: the molecule that is a “necessary evil” in the cell. Angew Chem Int Ed 48:3022–3024

    Article  CAS  Google Scholar 

  66. Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393

    Article  CAS  Google Scholar 

  67. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659

    Article  CAS  Google Scholar 

  68. Miller EW, Tulyathan O, Isacoff EY, Chang CJ (2007) Molecular imaging of hydrogen peroxide produced for cell signaling. Nat Chem Biol 3:263–267

    Article  CAS  Google Scholar 

  69. Dickinson C, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  Google Scholar 

  70. Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Oranelle-targetable fluorescent probes for imaging of hydrogen peroxide in living cells via SNAO-Tag protein labeling. J Am Chem Soc 132:4455–4465

    Article  CAS  Google Scholar 

  71. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107:15681–15686

    Article  CAS  Google Scholar 

  72. Dickinson BC, Huynh H, Chang CJ (2010) A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 132:5906–5915

    Article  CAS  Google Scholar 

  73. Albers AE, Okreglak VS, Chang CJ (2006) A FRET-based approach for ratiometric fluorescence detection of hydrogen peroxide. J Am Chem Soc 128:9640–9641

    Article  CAS  Google Scholar 

  74. Lo L-C, Chu C-Y (2003) Development of highly selective and sensitive probes for hydrogen peroxide. Chem Commun 2728–2729

  75. Luo F, Yin J, Gao F, Wang L (2009) A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy. Microchim Acta 165:23–28

    Article  CAS  Google Scholar 

  76. Germain ME, Knapp MJ (2008) Turn-on fluorescence detection of H2O2 and TATP. Inorg Chem 47:9748–9750

    Article  CAS  Google Scholar 

  77. de Silva AP, Gunnlaugsson T, Rice TE (1996) Recent evolution of luminescent photoinduced electron transfer sensors. Analyst 121:1759–1762

    Article  Google Scholar 

  78. Ji H, Dabestani R, Brown GM, Hettich RL (1999) Spacer length effect on the photoinduced electron transfer fluorescent probe for alkali metal ions. Photochem Photobiol 69:513–516

    Article  CAS  Google Scholar 

  79. Mohr GJ (2006) New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation - a review of recent developments. Anal Bioanal Chem 386:1201–1214

    Article  CAS  Google Scholar 

  80. Snowden TS, Anslyn EV (1999) Anion recognition: synthetic receptors for anions and their application in sensors. Curr Opin Chem Biol 3:740–746

    Article  CAS  Google Scholar 

  81. Anslyn EV (2007) Supramolecular analytical chemistry. J Org Chem 72:687–699

    Article  CAS  Google Scholar 

  82. He H, Mortellaro MA, Leiner MJP, Young ST, Fraatz RJ, Tusa JK (2003) A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal Chem 75:549–555

    Article  CAS  Google Scholar 

  83. Cha NR, Moon SY, Chang SK (2003) New ON-OFF type Ca2+-selective fluoroionophore having boron-dipyrromethene fluorophores. Tetrahedron Lett 44:8265–8268

    Article  CAS  Google Scholar 

  84. Akasaka K, Suzuki T, Ohrui H, Meguro H (1987) Study on aromatic phosphines for novel fluorometry of hydroperoxides (I) – synthesis and spectral properties of diphenyl aryl phosphines and their oxides. Anal Lett 20:731–745

    CAS  Google Scholar 

  85. de Silva AP, Gunaratne HQN, Habib-Jiwan JL, McCoy CP, Rice TE, Soumillion JP (1995) New fluorescent model compounds for the study of the photoinduced electron transfer: The influence of a molecular electric field in the excited state. Angew Chem Int Ed 34:1728–1731

    Article  Google Scholar 

  86. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  87. de Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134:2385–2393

    Article  CAS  Google Scholar 

  88. Weller A (1968) Electron-transfer and complex formation in the excited state. Pure Appl Chem 16:115–123

    Article  CAS  Google Scholar 

  89. Soh N, Sakawaki O, Makihara K, Odo Y, Fukaminato T, Kawai T, Irie M, Imato T (2005) Design and development of a fluorescent probe for monitoring hydrogen peroxide using photoinduced electron transfer. Bioorg Med Chem 13:1131–1139

    Article  CAS  Google Scholar 

  90. Onoda M, Uchiyama S, Endo A, Tokuyama H, Santa T, Imai K (2003) First fluorescent photoinduced electron transfer (PET) reagent for hydroperoxides. Org Lett 5:1459–1461

    Article  CAS  Google Scholar 

  91. Simon P, Farsang G, Amatore C (1997) Mechanistic investigation of the oxidation of p-anisidine in unbuffered DMF using fast scan rates at ultramicroelectrodes. J Electroanal Chem 435:165–171

    Article  CAS  Google Scholar 

  92. Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123:2530–2536

    Article  CAS  Google Scholar 

  93. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tuneable fluorescence probes. J Am Chem Soc 127:4888–4894

    Article  CAS  Google Scholar 

  94. Nagano T, Urano Y, Abo M (2009) Fluorescent probe specific to hydrogen peroxide. PCT/JP2009/054017

  95. Richardson FR (1982) Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552

    Article  CAS  Google Scholar 

  96. Spangler CM, Spangler C, Schäferling M (2008) Luminescent lanthanide complexes as probes for the determination of enzyme activities. Ann NY Acad Sci 1130:138–148

    Article  CAS  Google Scholar 

  97. Parker D, Dickins RS, Puschmann H, Crossland C, Howard JAK (2002) Being excited by lanthanide coordination complexes: Aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010

    Article  CAS  Google Scholar 

  98. Dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent development in the field of supramolecular lanthanide luminescence sensors and self-assemblies. Coord Chem Rev 252:2512–2527

    Article  CAS  Google Scholar 

  99. Georges J (1993) Lanthanide-sensitized luminescence and applications to the determination of organic analytes. Analyst 118:1481–1486

    Article  CAS  Google Scholar 

  100. Dadabhoy A, Faulkner S, Sammes PG (2000) Small singlet-triplet energy gap of acridone enables longer wavelength sensitization of europium(III) luminescence. J Chem Soc, Perkin Trans 2:2359–2360

    Google Scholar 

  101. Beeby A, Bushby LM, Maffeo D, Williams JAG (2000) The efficient intramolecular sensitization of terbium(III) and europium (III) by benzopheneone containing ligands. J Chem Soc, Perkin Trans 2:1281–1283

    Google Scholar 

  102. Rakicioglu Y, Perrin JH, Schulman SG (1999) Increased luminescence of the tetracycline-europium(III) system following oxidation by hydrogen peroxide. J Pharm Biomed Anal 20:397–399

    Article  CAS  Google Scholar 

  103. Wolfbeis OS, Dürkop A, Wu M, Lin Z (2002) A europium ion-based luminescent sensing probe for hydrogen peroxide. Angew Chemie 114:4681–4684, Angew Chemie Int Ed 1:4495–4498

    Article  Google Scholar 

  104. Schäferling M, Dürkop A (2008) Intrinsically Referenced Fluorimetric Sensing and Detection Schemes: Methods, Advantages and Applications. In Resch-Genger U (ed) Springer Series on Fluorescence Vol. 5: Standardization and Quality Assurance in Fluorescence Measurements Part I. Springer Berlin Heidelberg, pp 373–413

  105. Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Williams G, Woods M (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy–matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc, Perkin Trans 2:493–503

    Google Scholar 

  106. Wolfbeis OS, Schäferling M, Dürkop A (2003) Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim Acta 143:221–227

    Article  CAS  Google Scholar 

  107. Schäferling M, Wu M, Enderlein J, Bauer H, Wolfbeis OS (2003) Time-resolved luminescence imaging of hydrogen peroxide using sensor membranes in a microwell format. Appl. Spectroscopy 57:1386–1392

    Article  Google Scholar 

  108. Bel’tyukova SV, Vityukova EO, Egorova AVJ (2007) Spectral luminescence properties of Eu(III) complexes with tetracycline antibiotics and hydrogen peroxide. J Appl Spectrosc 74:344–349

    Article  CAS  Google Scholar 

  109. Kozhevnikov VN, Mandl C, Miltschitzky S, Duerkop A, Wolfbeis OS, Koenig B (2005) Strong emission increase of a dicarboxyterpyridine europium(III) complex in the presence of citrate and hydrogen peroxide. Inorg Chim Acta 358:2445–2448

    Article  CAS  Google Scholar 

  110. Wu M, Lin Z, Schäferling M, Dürkop A, Wolfbeis OS (2005) Fluorescence imaging of the activity of glucose oxidase using a hydrogen-peroxide sensitive europium probe. Anal Biochem 340:66–73

    Article  CAS  Google Scholar 

  111. Wu M, Lin Z, Wolfbeis OS (2003) Determination of the activity of catalase using a europium(III)-tetracycline-derived fluorescent substrate. Anal Biochem 320:129–135

    Article  CAS  Google Scholar 

  112. Lin Z, Wu M, Wolfbeis OS, Schäferling M (2006) A novel method for time-resolved fluorimetric determination and imaging of peroxidase, and its application to an enzyme-linked immunosorbent assay. Chem Eur J 12:2730–2738

    Article  CAS  Google Scholar 

  113. Lei W, Duerkop A, Lin Z, Wu M, Wolfbeis OS (2003) Detection of hydrogen peroxide in river water via a microplate luminescence assay with time-resolved (“gated”) detection. Microchim Acta 143:269–274

    Article  CAS  Google Scholar 

  114. Lippert AR, Gschneidtner T, Chang CJ (2010) Lanthanide-based luminescent probes for selective time-gated detection of hydrogen peroxide in water and in living cells. Chem Commun 46:7510–7512

    Article  CAS  Google Scholar 

  115. Meyer J, Karst U (2000) Peroxidase enhanced lanthanide luminescence–a new technique for the evaluation of bioassays. Analyst 125:1537–1538

    Article  CAS  Google Scholar 

  116. Stevani CVM, Silva SM, Baader WJ (2000) Studies on the mechanism of excitation step in peroxyoxalate chemiluminescence. Eur J Org Chem 24:4037–4046

    Article  Google Scholar 

  117. Hadd AG, Seeber A, Birks W (2000) Kinetics of two pathways in peroxyoxalate chemiluminescence. J Org Chem 65:2675–2683

    Article  CAS  Google Scholar 

  118. Kwakman PJM, de Jong GJ, Brinkmann UAT (1992) Mechanism of the peroxalate chemiluminescence reaction. Trends Anal Chem 11:232–237

    Article  CAS  Google Scholar 

  119. Arnous A, Petrakis C, Makris DP, Kefalas P (2002) A peroxyoxalate chemiluminescence-based assay for the evaluation of hydrogen peroxide scavenging activity employing 9,10-diphenylanthracene as the fluorophore. J Pharmacol Toxicol Meth 48:171–177

    Article  CAS  Google Scholar 

  120. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR, Murthy N (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765–769

    Article  CAS  Google Scholar 

  121. Lee D, Erigala VR, Dasari M, Yu J, Dickson RM, Murthy N (2008) Detection of hydrogen peroxide with chemiluminescent micelles. Int J Nanomedicine 3:471–476

    Article  CAS  Google Scholar 

  122. Van de Bittner GC, Dubikovskaya EA, Bertozzi CR, Chang CJ (2010) In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc Natl Acad Sci USA 107:21316–21321

    Article  Google Scholar 

  123. Gill R, Bahshi L, Freeman R, Willner I (2008) Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angew Chem Int Ed 47:1676–1679

    Article  CAS  Google Scholar 

  124. Casanova D, Bouzigues C, Nguyen TL, Ramodiharilafy RO, Bouzhir-Sima L, Gacoin T, Boilot JP, Tharaux PL, Alexandrou A (2009) Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells. Nat Nanotechnol 4:581–585

    Article  CAS  Google Scholar 

  125. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluoresecent indiacator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  CAS  Google Scholar 

  126. Markvicheva KN, Bilan DS, Mishina NM, Gorokhovatsky AY, Vinokurov LM, Lukyanov S, Belousov VV (2010) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem. doi:10.1016/j.bmc.2010.07.014

    Google Scholar 

  127. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington JS (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  Google Scholar 

  128. Dooley CT, Dore TM, Hanson GT, Coyt Jackson W, Remington JS, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293

    Article  CAS  Google Scholar 

  129. Cui H, Wang W, Duan CF, Dong YP, Guo JZ (2007) Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chem Eur J 13:6975–6984

    Article  CAS  Google Scholar 

  130. Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125:789–791

    Article  CAS  Google Scholar 

  131. Fähnrich KA, Pravda M, Guibault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54:531–559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäferling, M., Grögel, D.B.M. & Schreml, S. Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174, 1–18 (2011). https://doi.org/10.1007/s00604-011-0606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0606-3

Keywords

Navigation