Skip to main content

Advertisement

Log in

Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

New sources of insulin-secreting cells are strongly required for the cure of diabetes. Recent successes in differentiating embryonic stem cells, in combination with the discovery that it is possible to derive human induced pluripotent stem cells (iPSCs) from somatic cells, have raised the possibility that patient-specific beta cells might be derived from patients through cell reprogramming and differentiation. In this study, we aimed to obtain insulin-producing cells from human iPSCs and test their ability to secrete insulin in vivo.

Methods

Human iPSCs, derived from both fetal and adult fibroblasts, were differentiated in vitro into pancreas-committed cells and then transplanted into immunodeficient mice at two different stages of differentiation (posterior foregut and endocrine cells).

Results

IPSCs were shown to differentiate in insulin-producing cells in vitro, following the stages of pancreatic organogenesis. At the end of the differentiation, the production of INSULIN mRNA was highly increased and 5 ± 2.9 % of the cell population became insulin-positive. Terminally differentiated cells also produced C-peptide in vitro in both basal and stimulated conditions. In vivo, mice transplanted with pancreatic cells secreted human C-peptide in response to glucose stimulus, but transplanted cells were observed to lose insulin secretion capacity during the time. At histological evaluation, the grafts resulted to be composed of a mixed population of cells containing mature pancreatic cells, but also pluripotent and some neuronal cells.

Conclusion

These data overall suggest that human iPSCs have the potential to generate insulin-producing cells and that these differentiated cells can engraft and secrete insulin in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton FB, Rickels MR, Alejandro R et al (2012) Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 35:1436–1445. doi:10.2337/dc12-0063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. McCall M, Shapiro AMJ (2012) Update on islet transplantation. Cold Spring Harb Perspect Med 2:a007823. doi:10.1101/cshperspect.a007823

    Article  PubMed Central  PubMed  Google Scholar 

  3. D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401. doi:10.1038/nbt1259

    Article  PubMed  Google Scholar 

  4. Jiang J, Au M, Lu K et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953. doi:10.1634/stemcells.2006-0761

    Article  CAS  PubMed  Google Scholar 

  5. Jiang W, Shi Y, Zhao D et al (2007) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333–344. doi:10.1038/cr.2007.28

    Article  CAS  PubMed  Google Scholar 

  6. Phillips BW, Hentze H, Rust WL et al (2007) Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16:561–578. doi:10.1089/scd.2007.0029

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Borowiak M, Fox JL et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5:258–265. doi:10.1038/nchembio.154

    Article  CAS  PubMed  Google Scholar 

  8. Nostro MC, Sarangi F, Ogawa S et al (2011) Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871. doi:10.1242/dev.055236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Basford CL, Prentice KJ, Hardy AB et al (2012) The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55:358–371. doi:10.1007/s00125-011-2335-x

    Article  CAS  PubMed  Google Scholar 

  10. Rezania A, Bruin JE, Riedel MJ et al (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029. doi:10.2337/db11-1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Rezania A, Bruin JE, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442. doi:10.1002/stem.1489

    Article  CAS  PubMed  Google Scholar 

  12. Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. doi:10.1038/nbt.3033

    PubMed  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  14. Tateishi K, He J, Taranova O et al (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607. doi:10.1074/jbc.M806597200

    Article  CAS  PubMed  Google Scholar 

  15. Zhang D, Jiang W, Liu M et al (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438. doi:10.1038/cr.2009.28

    Article  CAS  PubMed  Google Scholar 

  16. Thatava T, Nelson TJ, Edukulla R et al (2011) Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 18:283–293. doi:10.1038/gt.2010.145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8:274–284. doi:10.1016/j.scr.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  18. Kaitsuka T, Noguchi H, Shiraki N et al (2014) Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl Med 3:114–127. doi:10.5966/sctm.2013-0075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hua H, Shang L, Martinez H et al (2013) iPSC-derived β cells model diabetes due to glucokinase deficiency. J Clin Invest 123:3146–3153. doi:10.1172/JCI67638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  PubMed  Google Scholar 

  21. Ricciardi S, Ungaro F, Hambrock M et al (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14:911–923. doi:10.1038/ncb2566

    Article  CAS  PubMed  Google Scholar 

  22. Di Stefano B, Maffioletti SM, Gentner B et al (2011) A microRNA-based system for selecting and maintaining the pluripotent state in human induced pluripotent stem cells. Stem Cells 29:1684–1695. doi:10.1002/stem.726

    Article  PubMed  Google Scholar 

  23. Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106. doi:10.1038/nbt1374

    Article  CAS  PubMed  Google Scholar 

  24. Alipio Z, Liao W, Roemer EJ et al (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA 107:13426–13431. doi:10.1073/pnas.1007884107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kelly OG, Chan MY, Martinson LA et al (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29:750–756

    Article  CAS  PubMed  Google Scholar 

  26. Ramachandran D, Roy U, Garg S et al (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 278:1167–1174. doi:10.1111/j.1742-4658.2011.08042.x

    Article  CAS  PubMed  Google Scholar 

  27. Baroukh NN, Van Obberghen E (2009) Function of microRNA-375 and microRNA-124a in pancreas and brain. FEBS J 276:6509–6521. doi:10.1111/j.1742-4658.2009.07353.x

    Article  CAS  PubMed  Google Scholar 

  28. Maehr R, Chen S, Snitow M et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106:15768–15773. doi:10.1073/pnas.0906894106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461. doi:10.5966/sctm.2011-0044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ohmine S, Squillace KA, Hartjes KA et al (2012) Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging 4:60–73

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Jiang W, Shi Y, Zhao D et al (2007) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333–344. doi:10.1038/cr.2007.28

    Article  CAS  PubMed  Google Scholar 

  32. Hakim F, Kaitsuka T, Raeed JM et al (2014) High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells. J Biol Chem 289:9623–9638. doi:10.1074/jbc.M113.524363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Osafune K, Caron L, Borowiak M et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315

    Article  CAS  PubMed  Google Scholar 

  34. Jeon K, Lim H, Kim J-H et al (2012) Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev 21:2642–2655. doi:10.1089/scd.2011.0665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Reinert RB, Brissova M, Shostak A et al (2013) Vascular endothelial growth factor-a and islet vascularization are necessary in developing, but not adult, pancreatic islets. Diabetes 62:4154–4164. doi:10.2337/db13-0071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jiang W, Sui X, Zhang D et al (2011) CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 29:609–617

    Article  CAS  PubMed  Google Scholar 

  37. Ben-David U, Gan Q-F, Golan-Lev T et al (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12:167–179

    Article  CAS  PubMed  Google Scholar 

  38. Lahm H, Doppler S, Dreßen M et al (2014) Live fluorescent RNA-based detection of pluripotency gene expression in embryonic and induced pluripotent cells of different species. Stem Cells. doi:10.1002/stem.1872

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Health (Grant Rf-FSR-2008-1202373) and by EU (HEALTH-F5-2009-241883-BetaCellTherapy). SP is Ph.D. Student in Experimental and Translational Medicine, University of Insubria, Varese (Italy).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Human Rights disclosure

This article does not contain any studies with human subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Piemonti or Valeria Sordi.

Additional information

Managed by Massimo Porta.

Lorenzo Piemonti and Valeria Sordi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

592_2015_726_MOESM1_ESM.ppt

Figure 1S. Differentiation of iPSCs into insulin-producing cells. Quantification of NANOG, SOX17, HNF1b and NGN3 mRNAs during differentiation of iPSCs into insulin-producing cells by droplet digital PCR. Gene expression was analyzed at the steps of pluripotency (iPSC), definitive endoderm (DE), posterior foregut (PF), pancreatic endoderm (PE) and endocrine cells (EN). PCR amplification of iPSCs cDNAs was performed in an emulsion using gene specific primers and hydrolysis probes. The number of gene specific mRNA copies in each sample, corresponding to droplets fluorescing above background level (red line), was determined after droplets acquisition and counting on a QX100 instrument (Bio-Rad) and the QuantaSoft software v1.2.10 applying a correction algorithm based on the Poisson distribution. The number of gene specific mRNA copies per nanogram of total RNA in each sample of one representative experiment is shown. (PPT 228 kb)

592_2015_726_MOESM2_ESM.ppt

Figure 2S. Differentiation into insulin-producing cells of iPSCs reprogrammed from adult fibroblasts. Gene expression of adult fibroblast-derived iPSCs reprogrammed from adult fibroblasts was analyzed during differentiation at the steps of pluripotency, definitive endoderm, posterior foregut, pancreatic endoderm and endocrine cells. Gene expression analysis by Taqman of markers of pluripotency (OCT4 and NANOG), definitive endoderm (FOXA2 and SOX17), posterior foregut (HNF1b and PDX1), pancreatic endoderm (NGN3 and NKX2.2) and endocrine cells (INS) is shown. Normalized gene expression levels are reported with the highest expression set to 1 and all the others relative to this. Histograms represent mean of n=2 experiments ± SEM. (PPT 100 kb)

592_2015_726_MOESM3_ESM.ppt

Figure 3S: Functional characterization of iPSCs-derived cells after transplantation (tx) in NOD/SCID mice. Analysis of graft function by human C-peptide measurement after oral glucose test tolerance in sera of mice transplanted with iPSCs-derived-terminally differentiated (upper panel) or precursor cells (lower panel). (PPT 58 kb)

592_2015_726_MOESM4_ESM.ppt

Figure 4S: Characterization of iPSCs-derived beta cells. Protein expression analysis by flow cytometry of CD318 (CUB domain containing protein 1) and CD200 (OX-2 membrane glycoprotein). Dot plots of control unstained cells (left) and stained cells (right) are shown. Gate delimitates positive events. Percentage of positive cells of a representative experiment are reported. SSC: side scatter, PE: phycoerythrin, APC: allophycocyanin. (PPT 140 kb)

Supplementary material 5 (DOC 36 kb)

Supplementary material 6 (PPT 60 kb)

Supplementary material 7 (PPT 67 kb)

Supplementary material 8 (PPT 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrini, S., Ungaro, F., Mercalli, A. et al. Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetol 52, 1025–1035 (2015). https://doi.org/10.1007/s00592-015-0726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0726-z

Keywords

Navigation