Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Understanding the response of arbuscular mycorrhizal (AM) fungi to warming and nitrogen (N) fertilization is critical to assess the impact of anthropogenic disturbance on ecosystem functioning under global climate change scenarios. In this study, AM fungal communities were examined in a full factorial design with warming and N addition in a semiarid steppe in northern China. Warming significantly increased AM fungal spore density, regardless of N addition, whilst N addition significantly decreased AM fungal extraradical hyphal density, regardless of warming. A total of 79 operational taxonomic units (OTUs) of AM fungi were recovered by 454 pyrosequencing of SSU rDNA. Warming, but not N addition, had a significant positive effect on AM fungal OTU richness, while warming and N addition significantly increased AM fungal Shannon diversity index. N addition, but not warming, significantly altered the AM fungal community composition. Furthermore, the changes in AM fungal community composition were associated with shifts in plant community composition indirectly caused by N addition. These findings highlight the different effects of warming and N addition on AM fungal communities and contribute to understanding AM fungal community responses to global environmental change scenarios in semiarid steppe ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214

    Article  PubMed  Google Scholar 

  • Arbuckle JL (2011) IBM® SPSS® Amos™ 20 user’s guide. IBM Corporation, Armonk

    Google Scholar 

  • Bai WM, Xia JY, Wan SQ, Zhang WH, Li LH (2012) Day and night warming have different effect on root lifespan. Biogeosciences 9:375–384

    Article  Google Scholar 

  • Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298

    Article  Google Scholar 

  • Chen Y, Zhang X, Ye J, Han H, Wan S, Chen B (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381

    Article  CAS  Google Scholar 

  • Clark CM, Cleland EE, Collins SL, Fargione JE, Gough L, Gross KL, Pennings SC, Suding KN, Grace JB (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10:596–607

    Article  PubMed  Google Scholar 

  • Currey PM, Johnson D, Dawson LA, van der Wal R, Thornton B, Sheppard LJ, Leith ID, Artz RRE (2011) Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum. Soil Biol Biochem 43:495–502

    Article  CAS  Google Scholar 

  • Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, Minn., pp 29–35

    Google Scholar 

  • Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal community along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70

    Article  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial community across nitrogen gradients. ISME J 6:1007–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gavito ME, Schweiger P, Jakobsen I (2003) P uptake by arbuscular mycorrhizal hyphae: Effect of soil temperature and atmospheric CO2 enrichment. Glob Chang Biol 9:106–116

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183:1188–1200

    Article  PubMed  Google Scholar 

  • Heinemeyer A, Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: Growth responses of the host plant and its AM fungal partner. J Exp Bot 55:525–534

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer A, Ridgway KP, Edwards EJ, Benham DG, Young JPW, Fitter AH (2003) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Chang Biol 10:52–64

    Article  Google Scholar 

  • Hoeppner SS, Dukes JS (2012) Interactive responses of old-field plant growth and composition to warming and precipitation. Glob Chang Biol 18:1754–1768

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agric 24:1085–1090

    Article  CAS  Google Scholar 

  • Kim YC, Gao C, Zheng Y, Yang W, Chen L, He XH, Wan SQ, Guo LD (2014) Different responses of arbuscular mycorrhizal fungal community to day-time and night-time warming in a semiarid steppe. Chin Sci Bull. doi:10.1007/s11434-014-0602-1

    Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu YJ, Shi GX, Mao L, Cheng G, Jiang SJ, Ma XJ, An LZ, Du GZ, Johnson NC, Feng HY (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    Article  CAS  PubMed  Google Scholar 

  • Lu RK (1999) Soil and agro-chemical analytical methods. Agricultural Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie community. Oecologia 103:17–23

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: Community ecology package. R package version 2.0-7 http://CRAN.R-project.org/package=vegan

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Pan QM, Bai YF, Wu JG, Han XG (2011) Hierarchical plant responses and diversity loss after nitrogen addition: Testing three functionally-based hypotheses in the inner Mongolia Grassland. PLoS One 6:e20078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296:65–75

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner F (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rillig MC, Field CB, Allen MF (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577

    Article  Google Scholar 

  • Rillig MC, Wright SF, Shaw MR, Field CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52–58

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial community. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarzott D, Schüβler A (2001) A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203–207

    Article  CAS  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Cambridge

    Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob Chang Biol 9:186–194

    Article  Google Scholar 

  • Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob Chang Biol 10:1909–1921

    Article  Google Scholar 

  • Su YY, Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689–693

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taniguchi T, Kanzaki N, Tamai S, Yamanaka N, Futai K (2007) Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? New Phytol 173:322–334

    Article  PubMed  Google Scholar 

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2010) Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems 13:683–695

    Article  Google Scholar 

  • van Diepen LTA, Lilleskov EA, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20:799–811

    Article  Google Scholar 

  • Wan SQ, Xia JY, Liu WX, Niu SL (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90:2700–2710

    Article  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–321

    Chapter  Google Scholar 

  • Xia JY, Niu SL, Wan SQ (2009) Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Glob Chang Biol 15:1544–1556

    Article  Google Scholar 

  • Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ (2011a) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Chang Biol 17:2936–2944

    Article  Google Scholar 

  • Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011b) Community structure and composition in response to climate change in a temperate steppe. Glob Chang Biol 17:452–465

    Article  Google Scholar 

  • Yang W, Zheng Y, Gao C, He XH, Ding Q, Kim YC, Rui YC, Wang SP, Guo LD (2013) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS One 8:e76447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng Y, Kim YC, TianXF CL, Yang W, Gao C, Song MH, Xu XL, Guo LD (2014) Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiol Ecol 89:594–605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31070434, 30592005) and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-J-6). The authors thank Dr. Xinyu Zhang in the Institute of Microbiology, Chinese Academy of Sciences for bioinformatics analyses, and Dr. Jo Taylor from the Royal Botanic Garden Edinburgh for language editing and comments during manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Dong Guo.

Additional information

Yong-Chan Kim and Cheng Gao contributed equally

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Neighbor joining analysis of SSU rDNA of arbuscular mycorrhizal fungal OTUs obtained in the study with reference sequences of Glomeromycota from GenBank in MEGA. The phylogram is rooted with an outgroup Archaeospora trappei. The GenBank accession number of reference sequences and the sequence name of OTUs obtained in this study are given in parentheses. Bar indicates 0.01 expected changes per site (GIF 401 kb)

High resolution image (TIFF 4379 kb)

Table S1

Plant and soil variables in control (C), warming (W), nitrogen addition (N) and W plus N (WN) in a semiarid steppe (DOCX 12 kb)

Table S2

Barcode sequences in the raw sequence data of the 24 samples used in the study (DOCX 11 kb)

Table S3

Principle component analysis (PCA) of plant community composition in a semiarid steppe (DOCX 17 kb)

Table S4

Mantel tests among distance matrices (DOCX 15 kb)

Table S5

Abundance (read numbers) of arbuscular mycorrhizal fungal OTUs in every plot (XLSX 20 kb)

Table S6

Frequency of AM fungal OTUs recovered in this study (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YC., Gao, C., Zheng, Y. et al. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza 25, 267–276 (2015). https://doi.org/10.1007/s00572-014-0608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0608-1

Keywords

Navigation