Skip to main content
Log in

Robust design of a shape memory actuator with slider and slot layout and passive cooling control

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This work proposes a new shape memory actuator based on a slider and slot mechanism. The device is composed by two couples of opposed SMA coil elements. The SMA elements are heated by means of Joule effect connecting their ends to an electric power supply through special terminal clips. The cooling is realized with an axial air fan. The movement of the slot is realized when both SMA elements of a couple are heated. The electric connection are realized to minimize the wirings connecting a couple of parallel SMA elements in electric series, in this way electric contacts are not needed on the slot, but only in the static part of the device. On the upper side of the static guide, there is the axial cooling fan, and the sliding slot is realized with openings on upper and lower sides to allow the air flow. The actuator exhibits a linear relation between the feeding electric current and the realized mean speed, independently by the applied mechanical load. The generated mean speed is repeatable: the difference between the minimum and the maximum speed for a single condition is less than 1 %. The resulting cooling time is substantially less than those shown in literature with comparable technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aono H, Imamura R, Fuchiwaki O, Yamanashi Y, Bohringer KF (2014) Formulation and optimization of pulley-gear-type SMA heat engine toward microfluidic MEMS motor. In: IEEE international conference on intelligent robots and systems, p 2839–2845. doi:10.1109/IROS.2014.6942952

  • Ariano P, Accardo D, Lombardi M, Bocchini S, Draghi L, De Nardo L, Fino P (2015) Polymeric materials as artificial muscles: an overview. J Appl Biomater Funct Mater 13(1):1–9. doi:10.5301/jabfm.5000184

    Google Scholar 

  • Bhagyaraj J, Ramaiah KV, Saikrishna CN, Bhaumik SK, Gouthama (2013) Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot. J Alloy Compd 581:344–351. doi:10.1016/j.jallcom.2013.07.046

    Article  Google Scholar 

  • Bhattacharyya A, Lagoudas DC (1997) A stochastic thermodynamic model for the gradual thermal transformation of SMA polycrystals. Smart Mater Struct 6(3):235–250. doi:10.1088/0964-1726/6/3/003

    Article  Google Scholar 

  • Borboni A, Aggogeri F, Pellegrini N, Faglia R (2012) Innovative modular SMA actuator. Adv Mater Res 590:405–410

    Article  Google Scholar 

  • Borboni A, Aggogeri F, Faglia R (2013) Design and analysis of a fibre-shaped micro-actuator for robotic gripping. Int J Adv Rob Syst 10(149):1–10. doi:10.5772/55539

    Google Scholar 

  • Borboni A, Aggogeri F, Faglia R (2014) Fast kinematic model of a seven-bar linkage with a single compliant link. In: ASME 2014 12th biennial conference on engineering systems design and analysis, ESDA. doi:10.1115/ESDA2014-20076

  • Borboni A, Faglia R, Mor M (2014) Compliant device for hand rehabilitation of stroke patient. In: Proceedings of the 12th ASME conference on engineering systems design and analysis, Copenaghen

  • Borboni A, Aggogeri F, Merlo A, Pellegrini N, Amici C (2015) PKM mechatronic clamping adaptive device. Int J Adv Rob Syst. doi:10.5772/60052

    Google Scholar 

  • Carreras G, Casciati F, Casciati S, Isalgue A, Marzi A, Torra V (2011) Fatigue laboratory tests toward the design of SMA portico-braces. Smart Struct Syst 7(1):41–57

    Article  Google Scholar 

  • Chen F, Cannella F, Canali C, D’Imperio M, Hauptman T, Sofia G, Caldwell D (2014) A study on data-driven in-hand twisting process using a novel dexterous robotic gripper for assembly automation. In: IEEE international conference on intelligent robots and systems. p 4470–4475. doi:10.1109/IROS.2014.6943195

  • Cho KJ, Asada H (2005) Multi-axis SMA actuator array for driving anthropomorphic robot hand. 2005 IEEE international conference on robotics and automation (ICRA), vol 1–4:1356–1361

  • Choi HR, Jung KM, Koo JC, Nam JD (2007) Robotic applications of artificial muscle actuators. In: Electroactive polymers for robotic applications: artificial muscles and sensors. pp 49–90. doi:10.1007/978-1-84628-372-7_3

  • Choi JM, Son HM, Lee YJ (2008) Design of biomimetic robot-eye system with single vari-focal lens and winding-type SMA actuator. 2008 international conference on control, automation and systems, vol 1–4:2183–2187

  • Dong EB, Xu M, Zhang SW, Yang J (2013) System dynamics modeling and prototype investigation of a new SMA-electric motor hybrid linear actuator. 2013 IEEE/ASME international conference on advanced intelligent mechatronics (Aim): mechatronics for human wellbeing: 367–372

  • Flemming L, Mascaro S (2005) Control of scalable wet SMA actuator arrays. 2005 IEEE international conference on robotics and automation (ICRA), vol 1–4: 1338–1343

  • Flemming LJ, Johnson DE, Mascaro SA (2011) Optimal control of multi-input SMA actuator arrays using graph theory: expanding wavefront & simultaneous operations. 2011 IEEE/RSJ international conference on intelligent robots and systems: 780–785

  • Guo SX, Fukuda T (2004) SMA actuator-based novel type of miciropump for biomedical application. 2004 IEEE international conference on robotics and automation, vol 1–5. Proceedings: 1616–1621

  • Hadi A, Elahinia M, Yousefi-Koma A, Moghadam MM, Chapman C (2010) Position and force control of a Sma spring based differential actuator. Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems 1:555–564

    Google Scholar 

  • Hasegawa T, Majima S (1998) A control system to compensate the hysteresis by Preisach model on SMA actuator. Mhs ‘98, Proceedings of the 1998 international symposium on micromechatronics and human science: 171–176. doi:10.1109/Mhs.1998.745777

  • Ikuta K, Tsukamoto M, Hirose S (1991) Mathematical-model and experimental-verification of shape memory alloy for designing micro actuator. IEEE Micro Electro Mech Syst 103–108

  • Jairakrean S, Chanthasopeephan T (2009) Position control of SMA actuator for 3D tactile display. 2009 IEEE 11th international conference on rehabilitation robotics, Vol 1 and 2:271–276

  • Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. doi:10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  • Jani JM, Huang S, Leary M, Subic A (2015) Numerical modeling of shape memory alloy linear actuator. Comput Mech 56(3):443–461. doi:10.1007/s00466-015-1180-z

    Article  Google Scholar 

  • Kannan S, Giraud-Audine C, Patoor E (2009) Control of shape memory alloy (Sma) actuator using series–parallel model reference adaptive control (Mrac). Smasis 1:441–450

    Google Scholar 

  • Karhu M, Lindroos T (2010) Long-term behaviour of binary Ti-49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling. Smart Mater Struct 19(11):115019. doi:10.1088/0964-1726/19/11/115019

    Article  Google Scholar 

  • Kim SW, Lee JG, An S, Cho M, Cho KJ (2015) A large-stroke shape memory alloy spring actuator using double-coil configuration. Smart Mater Struct 24(9):095014. doi:10.1088/0964-1726/24/9/095014

    Article  Google Scholar 

  • Koh JS, Cho KJ (2009) Omegabot: biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM). 2009 IEEE international conference on robotics and biomimetics (Robio 2009), vol 1–4:1154–1159. doi:10.1109/Robio.2009.5420752

  • Kuribayashi K (2000) Micro SMA actuator and motion control. MHS 2000: Proceedings of the 2000 international symposium on micromechatronics and human science: 35–42. doi:10.1109/Mhs.2000.903279

  • Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214(11):1175–1177. doi:10.1002/macp.201300098

    Article  Google Scholar 

  • Lewis N, Seelecke S (2012) Effects of temperature boundary conditions on sma actuator performance using a fully coupled thermomechanical model. Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems (Smasis 2011), vol 1. pp 487–492

  • Meier H, Pollmann J, Czechowicz A (2012) Cooling strategies for a Sma wire actuator in a feed axis. Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems 2:327–332

    Google Scholar 

  • Mollaei M, Mascaro S (2013) Optimal control of multi-input sma actuator arrays on a trajectory using graph theory: modified a-star search algorithm. Proceedings of the Asme 5th annual dynamic systems and control division conference and Jsme 11th motion and vibration conference, Dscc 2012, vol 2. pp 743–750

  • Palmieri G, Palpacelli MC, Callegari M (2012) Study of a fully compliant u-joint designed for minirobotics applications. J Mech Des Trans ASME. doi:10.1115/1.4007303

    Google Scholar 

  • Palpacelli MC, Palmieri G, Callegari M (2012) A redundantly actuated 2-degrees-of-freedom mini pointing device. J Mech Robot. doi:10.1115/1.4006833

    Google Scholar 

  • Pandini S, Passera S, Ricco T, Borboni A, Bodini I, Vetturi D, Dassa L, Cambiaghi D, Paderni K, Degli Esposti M, Toselli M, Pilati F, Messori M (2013) Tailored one-way and two-way shape memory response of poly(epsilon-caprolactone)-based systems for biomedical applications. Adapt Active Multifunct Smart Mater Syst 77:313–318. doi:10.4028/www.scientific.net/AST.77.313

    Google Scholar 

  • Ren BY (2009) Modeling & simulation of push-pull type SMA actuator system. Imece 2008: mechanical systems and control, vol 11. pp 127–132

  • Rul CH, Wang XH, Guo SX (2007) A novel tool using SMA actuator for cell puncturing. Proceedings of Sice Annual Conference 1–8:254–257

    Google Scholar 

  • Ruth DJS, Dhanalakshmi K, Nakshatharan SS (2015) Bidirectional angular control of an integrated sensor/actuator shape memory alloy based system. Meas J Int Meas Confed 69:210–221. doi:10.1016/j.measurement.2015.02.058

    Article  Google Scholar 

  • Stoeckel D (1990) Shape-memory alloys—prompt new actuator designs. Adv Mater Processes 138(4):33–38

    Google Scholar 

  • Tai NT, Ahn KK (2010) Apply adaptive fuzzy sliding mode control to sma actuator. International conference on control, automation and systems (Iccas 2010):433–437

  • Wang Q, Xu Z (2015) Theoretical and experimental study of cooling method for SMA wire actuators. Zhongguo Jixie Gongcheng/China Mechanical Engineering 26(15):2075–2080. doi:10.3969/j.issn.1004-132X.2015.15.016

    MathSciNet  Google Scholar 

  • Willemse PF, Koopman BJ, Beyer J (1991) The texture development of Ti–Ni–Cu Wire during thermomechanical cycling. J Phys IV 1(C4):329–333. doi:10.1051/Jp4:1991449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Borboni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borboni, A., Faglia, R. Robust design of a shape memory actuator with slider and slot layout and passive cooling control. Microsyst Technol 24, 1379–1389 (2018). https://doi.org/10.1007/s00542-016-2998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2998-9

Navigation