Microsystem Technologies

, Volume 20, Issue 4, pp 971–988

Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

Authors

    • Tyndall National InstituteUniversity College Cork
  • Michael Nolan
    • Tyndall National InstituteUniversity College Cork
  • Yordan M. Georgiev
    • Tyndall National InstituteUniversity College Cork
  • Ran Yu
    • Tyndall National InstituteUniversity College Cork
  • Olan Lotty
    • Tyndall National InstituteUniversity College Cork
  • Nikolay Petkov
    • Tyndall National InstituteUniversity College Cork
  • Justin D. Holmes
    • Tyndall National InstituteUniversity College Cork
  • Guobin Jia
    • Institute of Photonic Technology
  • Björn Eisenhawer
    • Institute of Photonic Technology
  • Annett Gawlik
    • Institute of Photonic Technology
  • Fritz Falk
    • Institute of Photonic Technology
  • Naser Khosropour
    • Ecole Polytechnique Federal Lausanne
  • Elizabeth Buitrago
    • Ecole Polytechnique Federal Lausanne
  • Montserrat Fernández-Bolaños Badia
    • Ecole Polytechnique Federal Lausanne
  • Francois Krummenacher
    • Ecole Polytechnique Federal Lausanne
  • Adrian M. Ionescu
    • Ecole Polytechnique Federal Lausanne
  • Maher Kayal
    • Ecole Polytechnique Federal Lausanne
  • Adrian M. Nightingale
    • Imperial College London
  • John C. de Mello
    • Imperial College London
  • Erik Puik
    • Nanosens BV
  • Franc van der Bent
    • Nanosens BV
  • Rik Lafeber
    • Nanosens BV
  • Rajesh Ramaneti
    • Nanosens BV
  • Hien Duy Tong
    • Nanosens BV
  • Cees van Rijn
    • Nanosens BV
Technical Paper

DOI: 10.1007/s00542-014-2100-4

Cite this article as:
Fagas, G., Nolan, M., Georgiev, Y.M. et al. Microsyst Technol (2014) 20: 971. doi:10.1007/s00542-014-2100-4

Abstract

We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014