Skip to main content
Log in

Dynamic simulation of thermopneumatic micropumps for biomedical applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A model simulation of dynamic behavior of thermopneumatic micropump is presented. The model uses conservation of energy, mass, and momentum to predict the behavior of existing thermopneumatic micropumps. Applied to existing micropumps, simulation predicts trends similar to those reported experimentally. Dynamic simulation of effect of design parameters on performance of micropump is, then, carried out through the article. Results suggest that increasing operating frequencies results in higher volume flow rates until a critical frequency is reached. At higher frequencies volume flow rates decrease. Critical frequencies are dependent on damping. The higher the damping coefficient the lower the critical frequency becomes. For high frequency operation the performance of the micropump is dominated by both damping and heat capacity of micropump components. For low frequency operation the performance is dominated by heat losses from walls of air-chamber. The model provides general guidelines for building and operating the micropump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C (kJ kg−1 K−1):

Specific heat of component of air-chamber, i.e. diaphragm, air, or heater substrate

dc (m):

Thickness of air-chamber

Cth (J K−1):

Effective heat capacity of air-chamber components

Em (Pa):

Young’s modulus of elasticity of diaphragm material

\( {\dot{\text{E}}} \) (W):

Thermal power added through heater substrate

f (Hz):

Operating frequency

f c (Hz):

Critical frequency

mequiv (kg):

Effective mass of diaphragm

Po (Pa):

Initial pressure inside air-chamber

Q (m3 s−1):

Volume flow rate (dosage)

Rspecific (J kg−1 K−1):

Air gas-constant

rc (m):

Radius of air-chamber

S (m):

Deflection amplitude of diaphragm

\( {\dot{\text{S}}} \) (m s−1):

Speed amplitude of diaphragm

tm (m):

Thickness of diaphragm

To (K):

Initial temperature inside air-chamber

V (m3):

Volume of component of air-chamber, i.e. diaphragm, air, or heater substrate

\( \delta {\text{p}} \) (Pa):

Infinitesimal change in pressure inside air-chamber

\( \delta \forall \) (m3):

Infinitesimal change in volume inside air-chamber

\( \mathop {{{\updelta}}\forall }\limits^{ \cdot } \) (m3 s−1):

Rate of change in volume of air-chamber

\( \delta {\text{T}} \) (K):

Infinitesimal change in temperature inside air-chamber

\( \delta \upsilon \) (m3 kg−1):

Infinitesimal change in specific volume of air inside air-chamber

\( \varepsilon \) :

Poisson’s ratio of diaphragm material

\( \xi \) (N s m−1):

Damping coefficient of diaphragm

\( {{\upkappa}} \) (N m−1):

Stiffness of diaphragm

ρ (kg m−3):

Density of component of air-chamber, i.e. diaphragm, air, or heater substrate

τ (s):

Fundamental period in seconds

\( \upsilon_{\text{o}} \) (m3 kg−1):

Initial specific volume inside air-chamber

\( \omega \) (Radian s−1):

Fundamental angular frequency

\( \forall_{\text{o}} \) (m3):

Dead volume of air-chamber

\( \vartheta_{\text{air}} \) (W K−1):

Effective heat transfer coefficient accounting for heat transfer through the walls of air-chamber to the surrounding

References

  • Abi-Samra K, Clime L, Kong L, Gorkin R, Kim TH, Cho YK, Madou M (2011) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 11(5):643–652. doi:10.1007/s10404-011-0830-5

    Article  Google Scholar 

  • Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15(5):647–666. doi:10.1007/s00542-009-0804-7

    Article  Google Scholar 

  • Ashraf M, Tayyaba S, Nisar A, Afzulpurkar N, Bodhale D, Lomas T, Poyai A, Tuantranont A (2010) Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng 10(3):91–108. doi:10.1007/s10558-010-9100-5

    Article  Google Scholar 

  • Ashraf MW, Tayyaba S, Afzulpurkar N (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12(6):3648–3704

    Article  Google Scholar 

  • Chia BT, Liao H-H, Yang Y-J (2011) A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid. Sens Actuat A 165(1):86–93. doi:10.1016/j.sna.2010.02.018

    Article  Google Scholar 

  • Chu RC, Simons RE, Ellsworth MJ, Schmidt RR, Cozzolino V (2004) Review of cooling technologies for computer products. Device Mater Reliab IEEE Trans 4(4):568–585. doi:10.1109/tdmr.2004.840855

    Article  Google Scholar 

  • Cooney CG, Towe BC (2004) A thermopneumatic dispensing micropump. Sens Actuat A 116(3):519–524. doi:10.1016/j.sna.2004.05.015

    Article  Google Scholar 

  • Ha S-M, Cho W, Ahn Y (2009) Disposable thermo-pneumatic micropump for bio lab-on-a-chip application. Microelectron Eng 86(4–6):1337–1339. doi:10.1016/j.mee.2008.12.046

    Article  Google Scholar 

  • Hwang I-H, Lee S-K, Shin S-M, Lee Y-G, Lee J-H (2008) Flow characterization of valveless micropump using driving equivalent moment: theory and experiments. Microfluid Nanofluid 5(6):795–807. doi:10.1007/s10404-008-0275-7

    Article  Google Scholar 

  • Jeong OC, Yang SS (2000) Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm. Sens Actuat A 83(1–3):249–255. doi:10.1016/s0924-4247(99)00392-1

    Article  Google Scholar 

  • Jeong OC, Park SW, Yang SS, Pak JJ (2005) Fabrication of a peristaltic PDMS micropump. Sens Actuat A 123–124:453–458. doi:10.1016/j.sna.2005.01.035

    Article  Google Scholar 

  • Kim J-H, Na K-H, Kang CJ, Jeon D, Kim Y-S (2004) A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass. Microelectron Eng 73–74:864–869. doi:10.1016/j.mee.2004.03.066

    Article  Google Scholar 

  • Leissa AW (1969) Vibration of plates. NASA SP-160, vol Accessed from http://www.nla.gov.au/nla.cat-vn551119. Scientific and Technical Information Division, National Aeronautics and Space Administration; [for sale by the Supt. of Docs., US Govt. Print. Off.], Washington

  • Morganti E, Fuduli I, Montefusco A, Petasecca M, Pignatel GU (2005) SPICE modelling and design optimization of micropumps. Int J Environ Anal Chem 85(9–11):687–698. doi:10.1080/03067310500153876

    Article  Google Scholar 

  • Nabavi M (2009) Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7(5):599–619. doi:10.1007/s10404-009-0474-x

    Article  Google Scholar 

  • Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuat B Chem 130(2):917–942. doi:10.1016/j.snb.2007.10.064

    Article  Google Scholar 

  • Sheen H, Hsu C, Wu T, Chang C, Chu H, Yang C, Lei U (2008) Unsteady flow behaviors in an obstacle-type valveless micropump by micro-PIV. Microfluid Nanofluid 4(4):331–342. doi:10.1007/s10404-007-0189-9

    Article  Google Scholar 

  • Song WH, Lichtenberg J (2005) Thermo-pneumatic, single-stroke micropump. J Micromech Microeng 15(8):1425

    Article  Google Scholar 

  • Sung Rae H, Woo Young S, Do Han J, Geun Young K, Sang Sik Y, James Jungho P (2005) Fabrication and test of a submicroliter-level thermopneumatic micropump for transdermal drug delivery. In: Microtechnology in medicine and biology, 3rd IEEE/EMBS Special Topic Conference on 12–15 May 2005, pp 143–145. doi:10.1109/mmb.2005.1548407

  • Tan HY, Loke WK, Nguyen N-T (2010) A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sens Actuat B Chem 151(1):133–139. doi:10.1016/j.snb.2010.09.035

    Article  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55(3):315–328

    Article  Google Scholar 

  • Timoshenko SP, Woinowsky-Krieger S (1969) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Tsai N-C, Sue C-Y (2007) Review of MEMS-based drug delivery and dosing systems. Sens Actuat A 134(2):555–564. doi:10.1016/j.sna.2006.06.014

    Article  Google Scholar 

  • Van de Pol FCM, Van Lintel HTG, Elwenspoek M, Fluitman JHJ (1990) A thermopneumatic micropump based on micro-engineering techniques. Sens Actuat A 21(1–3):198–202. doi:10.1016/0924-4247(90)85038-6

    Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuat B Chem 105(1):28–38. doi:10.1016/j.snb.2004.02.033

    Google Scholar 

  • Yang Y-J, Liao H-H (2009) Development and characterization of thermopneumatic peristaltic micropumps. J Micromech Microeng 19(2):025003

    Article  Google Scholar 

  • Zimmermann S, Frank JA, Liepmann D, Pisano AP (2004) A planar micropump utilizing thermopneumatic actuation and in-plane flap valves. In: Micro electro mechanical systems. 17th IEEE International Conference on (MEMS), 2004, pp 462–465. doi:10.1109/mems.2004.1290622

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh K. Bardaweel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardaweel, H.K., Bardaweel, S.K. Dynamic simulation of thermopneumatic micropumps for biomedical applications. Microsyst Technol 19, 2017–2024 (2013). https://doi.org/10.1007/s00542-012-1734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1734-3

Keywords

Navigation