, Volume 18, Issue 2, pp 151-158

Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Our work is focused on two applications of fine tunable microfluidic systems, first to optimize heterogeneous size nanoparticle synthesis and second to build catalytic microreactors for advanced organic reactions. The first part of our work consists in the use of an original microfluidic setup for gold nanoparticle synthesis, which allows a high control of the reaction parameters as the reactants flow, the concentration, the temperature, and the reaction time. We show that using such microfluidic systems permit a better control of the reaction parameters for producing homodispersed 1–2 nm gold nanoparticle. The second part of our work deals with the incorporation of gold nanoparticles into silica capillaries to build catalytic microreactors dedicated to fine chemical reactions. Our strategy consists in the immobilization of gold nanopadiegolirticles onto the inner surface (2D dispersion) or into the inner volume (3D dispersion) of functionalized silica microcapillaries. Characterizations show that by different functionalization procedures, those gold nanoparticles are well anchored inside the microcapillary.