Skip to main content

Advertisement

Log in

Recognition of and recent issues in hereditary diffuse gastric cancer

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

In East Asian countries, gastric cancer incidence is high, but detection rates for germline CDH1 mutations that cause hereditary diffuse gastric cancers (HDGCs) are low. Consequently, screens and genetic testing for HDGC are often considered unimportant. Since the first germline truncating CDH1 mutations in Japanese patients were reported, some HDGC cases have been reported, and some of these involve large germline rearrangements and de novo mutation of CDH1. New methods for mutation detection—such as multiplex ligation-dependent probe amplification, array comparative genomic hybridization, and exome sequencing—have become available, as have new experimental models, including novel gene-knockout mice and gastric organoids. Because of these advances, searches for candidate genes (e.g., CTNNA1, MAP3K6) and our understanding of HDGC pathogenesis have improved in recent years; moreover, there have been substantial changes in the field since the current HDGC consensus guidelines were released. This review focuses on recent issues and advances in the study of HDGC. For example, lobular breast cancer cases and de novo occurrences of DGC are unlikely to meet the existing criteria for genetic testing, but current evidence indicates that some such cases may be good candidates for genetic testing. It is important to recognize that HDGC is a syndrome and that lobular breast cancer can be the first manifestation of this syndrome. CDH1 testing, including analyses of large genomic rearrangements, should be recommended even in countries where few HDGC cases have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.

    PubMed Central  PubMed  Google Scholar 

  4. Bertuccio P, Chatenoud L, Levi F, et al. Recent patterns in gastric cancer: a global overview. Int J Cancer. 2009;125:666–73.

    Article  CAS  PubMed  Google Scholar 

  5. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histoclinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    CAS  PubMed  Google Scholar 

  6. Asaka M, Kato M, Sakamoto N. Roadmap to eliminate gastric cancer with Helicobacter pylori eradication and consecutive surveillance in Japan. J Gastroenterol. 2014;49:1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Parsonnet J, Vandersteen D, Goates J, et al. Helicobacter pylori infection in intestinal- and diffuse-type gastric adenocarcinomas. J Natl Cancer Inst. 1991;83:640–3.

    Article  CAS  PubMed  Google Scholar 

  8. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut. 2001;49:347–53.

    Article  Google Scholar 

  9. Yamaoka Y, Kato M, Asaka M. Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med. 2008;47:1077–83.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Tsugane S. Salt, salted food intake, and risk of gastric cancer: epidemiologic evidence. Cancer Sci. 2005;96:1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Koizumi Y, Tsubono Y, Nakaya N, et al. Cigarette smoking and the risk of gastric cancer: a pooled analysis of two prospective studies in Japan. Int J Cancer. 2004;112:1049–55.

    Article  CAS  PubMed  Google Scholar 

  12. Henson DE, Dittus C, Younes M, et al. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973–2000: increase in the signet ring cell type. Arch Pathol Lab Med. 2004;128:765–70.

    PubMed  Google Scholar 

  13. Palli D, Galli M, Caporaso NE, et al. Family history and risk of stomach cancer in Italy. Cancer Epidemiol Biomarkers Prev. 1994;3:15–8.

    CAS  PubMed  Google Scholar 

  14. Stone J, Bevan S, Cunningham D, et al. Low frequency of germline E-cadherin mutations in familial and nonfamilial gastric cancer. Br J Cancer. 1999;79:1935–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fitzgerald RC, Caldas C. Clinical implications of E-cadherin associated hereditary diffuse gastric cancer. Gut. 2004;53:775–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–5.

    Article  CAS  PubMed  Google Scholar 

  17. Guilford PJ, Hopkins JB, Grady WM, et al. E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat. 1999;14:249–55.

    Article  CAS  PubMed  Google Scholar 

  18. Pharoah PD, Guilford P, Caldas C, International Gastric Cancer Linkage Consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121:1348–53.

    Article  CAS  PubMed  Google Scholar 

  19. Kaurah P, MacMillan A, Boyd N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297:2360–72.

    Article  CAS  PubMed  Google Scholar 

  20. Caldas C, Carneiro F, Lynch HT, et al. Familial gastric cancer: overview and guidelines for management. J Med Genet. 1999;36:873–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Fitzgerald RC, Hardwick R, Huntsman D, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet. 2010;47:436–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Berx G, Staes K, van Hengel J, et al. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics. 1995;26:281–9.

    Article  CAS  PubMed  Google Scholar 

  23. Hansford S, Kaurah P, Li-Chang H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1:23–32.

    Article  PubMed  Google Scholar 

  24. Shinmura K, Kohno T, Takahashi M, et al. Familial gastric cancer: clinicopathological characteristics, RER phenotype and germline p53 and E-cadherin mutations. Carcinogenesis. 1999;20:1127–31.

    Article  CAS  PubMed  Google Scholar 

  25. Yamada H, Shinmura K, Okudela K, et al. Identification and characterization of a novel germ line p53 mutation in familial gastric cancer in the Japanese population. Carcinogenesis. 2007;28:2013–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yamada H, Shinmura K, Ito H, et al. Germline alterations in the CDH1 gene in familial gastric cancer in the Japanese population. Cancer Sci. 2011;102:1782–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sugimoto S, Yamada H, Takahashi M, et al. Early-onset diffuse gastric cancer associated with a de novo large genomic deletion of CDH1 gene. Gastric Cancer. 2014;17:745–9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yamada M, Fukagawa T, Nakajima T, et al. Hereditary diffuse gastric cancer in a Japanese family with a large deletion involving CDH1. Gastric Cancer. 2014;17:750–6.

    Article  PubMed  Google Scholar 

  29. Worthley DL, Phillips KD, Wayte N, et al. Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome. Gut. 2012;61:774–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yanaru-Fujisawa R, Nakamura S, Moriyama T, et al. Familial fundic gland polyposis with gastric cancer. Gut. 2012;61:1103–4.

    Article  PubMed  Google Scholar 

  31. Gylling A, Abdel-Rahman WM, Juhola M, et al. Is gastric cancer part of the tumour spectrum of hereditary non-polyposis colorectal cancer? A molecular genetic study. Gut. 2007;56:926–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lynch HT, Lynch PM, Lanspa SJ, et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76:1–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Velho S, Fernandes MS, Leite M, et al. Causes and consequences of microsatellite instability in gastric carcinogenesis. World J Gastroenterol. 2014;20:16433–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2014;147:502–26.

    Article  PubMed  Google Scholar 

  35. Abraham SC, Nobukawa B, Giardiello FM, et al. Fundic gland polyps in familial adenomatous polyposis: neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am J Pathol. 2000;157:747–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Abraham SC, Park SJ, Mugartegui L, et al. Sporadic fundic gland polyps with epithelial dysplasia: evidence for preferential targeting for mutations in the adenomatous polyposis coli gene. Am J Pathol. 2002;161:1735–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    Article  CAS  PubMed  Google Scholar 

  38. Masciari S, Dewanwala A, Stoffel EM, et al. Gastric cancer in individuals with Li-Fraumeni syndrome. Genet Med. 2011;13:651–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119:1447–53.

    Article  CAS  PubMed  Google Scholar 

  40. Shinmura K, Goto M, Tao H, et al. A novel STK11 germline mutation in two siblings with Peutz-Jeghers syndrome complicated by primary gastric cancer. Clin Genet. 2005;67:81–6.

    Article  CAS  PubMed  Google Scholar 

  41. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998;280:1086–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature. 2006;441:1015–9.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Liu X, Fan Y, et al. Germline mutations and polymorphic variants in MMR, E-cadherin and MYH genes associated with familial gastric cancer in Jiangsu of China. Int J Cancer. 2006;119:2592–6.

    Article  CAS  PubMed  Google Scholar 

  44. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91:1310–6.

    Article  Google Scholar 

  45. Jakubowska A, Nej K, Huzarski T, et al. BRCA2 gene mutations in families with aggregations of breast and stomach cancers. Br J Cancer. 2002;87:888–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Heald B, Mester J, Rybicki L, et al. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139:1927–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Everett SM, Axon AT. Early gastric cancer in Europe. Gut. 1997;41:142–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lynch HT, Grady W, Suriano G, et al. Gastric cancer: new genetic developments. J Surg Oncol. 2005;90:114–33.

    Article  CAS  PubMed  Google Scholar 

  49. Moolgavkar SH, Knudson AG Jr. Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 1981;66:1037–52.

    CAS  PubMed  Google Scholar 

  50. Grady WM, Willis J, Guilford PJ, et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000;26:16–7.

    Article  CAS  PubMed  Google Scholar 

  51. Oliveira C, Sousa S, Pinheiro H, et al. Quantification of epigenetic and genetic 2nd hits in CDH1 during hereditary diffuse gastric cancer syndrome progression. Gastroenterology. 2009;136:2137–48.

    Article  CAS  PubMed  Google Scholar 

  52. Corso G, Carvalho J, Marrelli D, et al. Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. J Clin Oncol. 2013;31:868–75.

    Article  CAS  PubMed  Google Scholar 

  53. van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756–88.

    Article  CAS  PubMed  Google Scholar 

  54. Charlton A, Blair V, Shaw D, et al. Hereditary diffuse gastric cancer: predominance of multiple foci of signet ring cell carcinoma in distal stomach and transitional zone. Gut. 2004;53:814–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Carneiro F, Huntsman DG, Smyrk TC, et al. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol. 2004;203:681–7.

    Article  CAS  PubMed  Google Scholar 

  56. Rogers WM, Dobo E, Norton JA, et al. Risk-reducing total gastrectomy for germline mutations in E-cadherin (CDH1): pathologic findings with clinical implications. Am J Surg Pathol. 2008;32:799–809.

    Article  PubMed  Google Scholar 

  57. Barber ME, Save V, Carneiro F, et al. Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications for endoscopic surveillance of individuals at risk. J Pathol. 2008;216:286–94.

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura R, Saikawa Y, Takahashi T, et al. Retrospective analysis of prognostic outcome of gastric cancer in young patients. Int J Clin Oncol. 2011;16:328–34.

    Article  PubMed  Google Scholar 

  59. Takatsu Y, Hiki N, Nunobe S, et al. Clinicopathological features of gastric cancer in young patients. Gastric Cancer. 2015. doi:10.1007/s10120-015-0484-1.

    Google Scholar 

  60. Hyung WJ, Noh SH, Lee JH, et al. Early gastric carcinoma with signet ring cell histology. Cancer. 2002;94:78–83.

    Article  PubMed  Google Scholar 

  61. Humar B, Fukuzawa R, Blair V, et al. Destabilized adhesion in the gastric proliferative zone and c-Src kinase activation mark the development of early diffuse gastric cancer. Cancer Res. 2007;67:2480–9.

    Article  CAS  PubMed  Google Scholar 

  62. Suriano G, Seixas S, Rocha J, et al. A model to infer the pathogenic significance of CDH1 germline missense variants. J Mol Med (Berl). 2006;84:1023–31.

    Article  CAS  Google Scholar 

  63. Oliveira C, Senz J, Kaurah P, et al. Germline CDH1 deletions in hereditary diffuse gastric cancer families. Hum Mol Genet. 2009;18:1545–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kim S, Chung JW, Jeong TD, et al. Searching for E-cadherin gene mutations in early onset diffuse gastric cancer and hereditary diffuse gastric cancer in Korean patients. Fam Cancer. 2013;12:503–7.

    Article  CAS  PubMed  Google Scholar 

  65. Moreira-Nunes CA, Barros MB, do Nascimento Borges B, et al. Genetic screening analysis of patients with hereditary diffuse gastric cancer from northern and northeastern Brazil. Hered Cancer Clin Pract. 2014;12:18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Molinaro V, Pensotti V, Marabelli M, et al. Complementary molecular approaches reveal heterogeneous CDH1 germline defects in Italian patients with hereditary diffuse gastric cancer (HDGC) syndrome. Genes Chromosomes Cancer. 2014;53:432–45.

    Article  CAS  PubMed  Google Scholar 

  67. Schrader KA, Masciari S, Boyd N, et al. Germline mutations in CDH1 are infrequent in women with early-onset or familial lobular breast cancers. J Med Genet. 2011;48:64–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Petridis C, Shinomiya I, Kohut K, et al. Germline CDH1 mutations in bilateral lobular carcinoma in situ. Br J Cancer. 2014;110:1053–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Benusiglio PR, Malka D, Rouleau E, et al. CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet. 2013;50:486–9.

    Article  CAS  PubMed  Google Scholar 

  70. Yan H, Dobbie Z, Gruber SB, et al. Small changes in expression affect predisposition to tumorigenesis. Nat Genet. 2002;30:25–6.

    Article  CAS  PubMed  Google Scholar 

  71. Chen X, Weaver J, Bove BA, et al. Allelic imbalance in BRCA1 and BRCA2 gene expression is associated with an increased breast cancer risk. Hum Mol Genet. 2008;17:1336–48.

    Article  CAS  PubMed  Google Scholar 

  72. Valle L, Serena-Acedo T, Liyanarachchi S, et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science. 2008;321:1361–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Pinheiro H, Bordeira-Carriço R, Seixas S, et al. Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer. Hum Mol Genet. 2010;19:943–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Shah MA, Salo-Mullen E, Stadler Z, et al. De novo CDH1 mutation in a family presenting with early-onset diffuse gastric cancer. Clin Genet. 2012;82:283–7.

    Article  CAS  PubMed  Google Scholar 

  75. Corso G, Pedrazzani C, Pinheiro H, et al. E-cadherin genetic screening and clinico-pathologic characteristics of early onset gastric cancer. Eur J Cancer. 2011;47:631–9.

    Article  CAS  PubMed  Google Scholar 

  76. Yamada H, Shinmura K, Goto M, et al. Absence of germline mono-allelic promoter hypermethylation of the CDH1 gene in gastric cancer patients. Mol Cancer. 2009;8:63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Yabuta T, Shinmura K, Tani M, et al. E-cadherin gene variants in gastric cancer families whose probands are diagnosed with diffuse gastric cancer. Int J Cancer. 2002;101:434–41.

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y, Song JP, Ikeda M, et al. Ile-Leu substitution (I415L) in germline E-cadherin gene (CDH1) in Japanese familial gastric cancer. Jpn J Clin Oncol. 2003;33:17–20.

    Article  CAS  PubMed  Google Scholar 

  79. Yamada H, Sakamoto H, Sugimura H. Sexy small copy numbers in hereditary gastric carcinogenesis. J Gastroint Dig Syst. 2014;4:205.

    Article  Google Scholar 

  80. Wong SS, Kim KM, Ting JC, et al. Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing. Nat Commun. 2014;5:5477.

    Article  PubMed  Google Scholar 

  81. Tokunaga M, Ohyama S, Kuraoka K, et al. Twenty-two metachronous multiple signet-ring cell carcinomas treated with repeated gastrectomies and repeated endoscopic mucosal resections: report of a case. Surg Today. 2009;39:430–3.

    Article  PubMed  Google Scholar 

  82. Sugimachi K, Higashi I, Kitagawa D, et al. A case of hereditary gastric cancer with diffuse multiple lesions in the stomach. Jpn J Gastroenterol Surg. 2010;43:918–22.

    Article  Google Scholar 

  83. Majewski IJ, Kluijt I, Cats A, et al. An α-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J Pathol. 2013;229:621–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kobielak A, Fuchs E. α-Catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol. 2004;5:614–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Schuetz JM, Leach S, Kaurah P, et al. Catenin family genes are not commonly mutated in hereditary diffuse gastric cancer. Cancer Epidemiol Biomarkers Prev. 2012;21:2272–4.

    Article  CAS  PubMed  Google Scholar 

  86. Ford JM. Hereditary gastric cancer: an update at 15 years. JAMA Oncol. 2015;1:16–8.

    Article  PubMed  Google Scholar 

  87. Lee YS, Cho YS, Lee GK, et al. Genomic profile analysis of diffuse-type gastric cancers. Genome Biol. 2014;15:R55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  89. Kakiuchi M, Nishizawa T, Ueda H, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    Article  CAS  PubMed  Google Scholar 

  90. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  91. Gaston D, Hansford S, Oliveira C, et al. Germline mutations in MAP3K6 are associated with familial gastric cancer. PLoS Genet. 2014;10:e1004669.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Iriyama T, Takeda K, Nakamura H, et al. ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO J. 2009;28:843–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Pereira PS, Teixeira A, Pinho S, et al. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet. 2006;15:1704–12.

    Article  CAS  PubMed  Google Scholar 

  94. Shimada S, Mimata A, Sekine M, et al. Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut. 2012;61:344–53.

    Article  CAS  PubMed  Google Scholar 

  95. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

  96. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    Article  CAS  PubMed  Google Scholar 

  97. Barker N, Huch M, Kujala P, et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.

    Article  CAS  PubMed  Google Scholar 

  98. Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148:126–36.

    Article  PubMed  Google Scholar 

  99. Schlaermann P, Toelle B, Berger H, et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 2014. doi:10.1136/gutjnl-2014-307949.

    PubMed  Google Scholar 

  100. Nadauld LD, Garcia S, Natsoulis G, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15:428.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Li X, Nadauld L, Ootani A, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 2014;20:769–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Matano M, Date S, Shimokawa M, et al. Modelling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21:256–62.

    CAS  PubMed  Google Scholar 

  103. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13:653–8.

    Article  CAS  PubMed  Google Scholar 

  105. Huiping C, Sigurgeirsdottir JR, Jonasson JG, et al. Chromosome alterations and E-cadherin gene mutations in human lobular breast cancer. Br J Cancer. 1999;81:1103–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Hartmann LC, Schaid DJ, Woods JE, et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med. 1999;340:77–84.

    Article  CAS  PubMed  Google Scholar 

  107. Richards FM, McKee SA, Rajpar MH, et al. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum Mol Genet. 1999;8:607–10.

    Article  CAS  PubMed  Google Scholar 

  108. Frebourg T, Oliveira C, Hochain P, et al. Cleft lip/palate and CDH1/E-cadherin mutations in families with hereditary diffuse gastric cancer. J Med Genet. 2006;43:138–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Kluijt I, Siemerink EJ, Ausems MG, Dutch Working Group on Hereditary Gastric Cancer, et al. CDH1-related hereditary diffuse gastric cancer syndrome: clinical variations and implications for counseling. Int J Cancer. 2012;131:367–76.

    Article  CAS  PubMed  Google Scholar 

  110. Vogelaar IP, Figueiredo J, van Rooij IA, et al. Identification of germline mutations in the cancer predisposing gene CDH1 in patients with orofacial clefts. Hum Mol Genet. 2013;22:919–26.

    Article  CAS  PubMed  Google Scholar 

  111. Hozyasz KK, Mostowska A, Wójcicki P, et al. Nucleotide variants of the cancer predisposing gene CDH1 and the risk of non-syndromic cleft lip with or without cleft palate. Fam Cancer. 2014;13:415–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Huntsman DG, Carneiro F, Lewis FR, et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N Engl J Med. 2001;344:1904–9.

    Article  CAS  PubMed  Google Scholar 

  113. Norton JA, Ham CM, Van Dam J, et al. CDH1 truncating mutations in the E-cadherin gene: an indication for total gastrectomy to treat hereditary diffuse gastric cancer. Ann Surg. 2007;245:873–9.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Hebbard PC, Macmillan A, Huntsman D, et al. Prophylactic total gastrectomy (PTG) for hereditary diffuse gastric cancer (HDGC): the Newfoundland experience with 23 patients. Ann Surg Oncol. 2009;16:1890–5.

    Article  CAS  PubMed  Google Scholar 

  115. Shaw D, Blair V, Framp A, et al. Chromoendoscopic surveillance in hereditary diffuse gastric cancer: an alternative to prophylactic gastrectomy? Gut. 2005;54:461–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Lim YC, di Pietro M, O’Donovan M, et al. Prospective cohort study assessing outcomes of patients from families fulfilling criteria for hereditary diffuse gastric cancer undergoing endoscopic surveillance. Gastrointest Endosc. 2014;80:78–87.

    Article  PubMed  Google Scholar 

  117. Chan AO, Peng JZ, Lam SK, et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut. 2006;55:463–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Gotoda T, Yanagisawa A, Sasako M, et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer. 2000;3:219–25.

    Article  PubMed  Google Scholar 

  119. Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer. 2011;14:113–23.

    Article  Google Scholar 

  120. Hirasawa T, Gotoda T, Miyata S, et al. Incidence of lymph node metastasis and the feasibility of endoscopic resection for undifferentiated-type early gastric cancer. Gastric Cancer. 2009;12:148–52.

    Article  PubMed  Google Scholar 

  121. Okada K, Fujisaki J, Yoshida T, et al. Long-term outcomes of endoscopic submucosal dissection for undifferentiated-type early gastric cancer. Endoscopy. 2012;44:122–7.

    Article  CAS  PubMed  Google Scholar 

  122. Abe S, Oda I, Suzuki H, et al. Short- and long-term outcomes of endoscopic submucosal dissection for undifferentiated early gastric cancer. Endoscopy. 2013;45:703–7.

    Article  PubMed  Google Scholar 

  123. Oka S, Tanaka S, Higashiyama M, et al. Clinical validity of the expanded criteria for endoscopic resection of undifferentiated-type early gastric cancer based on long-term outcomes. Surg Endosc. 2014;28:639–47.

    Article  PubMed  Google Scholar 

  124. Suzuki H, Oda I, Abe S, et al. High rate of 5-year survival among patients with early gastric cancer undergoing curative endoscopic submucosal dissection. Gastric Cancer. 2015. doi:10.1007/s10120-015-0469-0.

    Google Scholar 

  125. Probst A, Pommer B, Golger D, et al. Endoscopic submucosal dissection in gastric neoplasia—experience from a European center. Endoscopy. 2010;42:1037–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Hiroyuki Hayashi (Department of Pathology, Yokohama Municipal Citizen’s Hospital) for his help in preparing the figures and his helpful comments on pathology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, S., Komatsu, H., Morohoshi, Y. et al. Recognition of and recent issues in hereditary diffuse gastric cancer. J Gastroenterol 50, 831–843 (2015). https://doi.org/10.1007/s00535-015-1093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1093-9

Keywords

Navigation