Skip to main content
Log in

The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We provide new whole-rock major and trace elements as well as 87Sr/86Sr and 143Nd/144Nd isotopic data of a suite of samples collected in the Late Cretaceous volcanic and plutonic bodies of the Apuseni Mts. (Romania) that belong to the Banatitic Magmatic and Metallogenic Belt, also called the Apuseni–Banat–Timok–Srednogorie belt. The samples define a medium- to high-K calc-alkaline differentiation trend that can be predicted by a three-step fractional crystallization process which probably took place in upper crustal magma chambers. Published experimental data indicate that the parent magma (Mg# = 0.47) of the Apuseni Mts. trend could have been produced by the lower crustal differentiation of a primary (in equilibrium with a mantle source) magma. The Late Cretaceous magmatic rocks of the Apuseni Mts. and Banat display overlapping major and trace element trends except that Sr is slightly lower and Ga is higher in the Apuseni Mts. parent magma. This difference can be accounted for by fractionating plagioclase-bearing (Apuseni Mts.) or amphibole-bearing (Banat) cumulates during the lower crustal differentiation of the primary magma to the composition of the parent magma of both trends. This, together with results obtained on the Late Cretaceous igneous rocks from the Timok area in Eastern Serbia, further suggests variation of the water content of the primary magma along and across the belt. The Apuseni Mts. versus the Banat samples display different isotopic compositions that likely resulted from the assimilation of two distinct crustal contaminants, in agreement with their emplacement in two separate mega-units of Alpine Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrei J, Cristescu T, Calota C, Proca A, Romanescu D, Russo-Sǎndulescu D, Ştefan A, Suceavǎ M, Bradu M, Hannich D, Albaiu M (1989) Spatial distribution and structural images of banatites from Romania deduced from gravity and magnetic data. Rev Roum Géol Géophys Géogr Sér Géophys 33:79–85

    Google Scholar 

  • Anton D (2000) Petrographical, geochemical and isotopic study of Mt. Mare granitoids, North Apuseni Mountains. Evolution of peraluminous magma. PhD Thesis, Cluj-Napoca, 176 pp

  • Antonijević I, Grubić A, Đjorđević M (1974) The upper Creaceous paleorift in Eastern Serbia. In: Metallogeny and concepts of the geotectonic development of Yugoslavia. Belgrade University, Belgrade

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256

    Article  Google Scholar 

  • Baker M, Grove T, Price R (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Mineral Petrol 118:111–129

    Article  Google Scholar 

  • Balintoni I, Balica C, Cliveţi M, Li LQ, Hann H, Chen F, Schuller V (2009) The emplacement age of the Muntele mare Variscan granite (Apuseni Mountains, Romania). Geol Carpath 60(6):495–504

    Article  Google Scholar 

  • Balintoni I, Balica C, Ducea M, Hann H-P (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411

    Article  Google Scholar 

  • Bea F, Pereira M, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312

    Article  Google Scholar 

  • Berza T, Ilinca G (2014) Late Cretaceous Banatitic magmatism and metallogeny in the frame of the Eoalpine tectonics from the Carpathian–Balkan orogen. In: Beqiraj A. et al (ed) XXth congress of the Carpathian–Balkan geological association. Buletini i Shkencave Gjeologjike, Tirana (Albania), pp 145–148

  • Berza T, Constantinescu E, Vlad S-N (1998) Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen. Resour Geol 48(4):291–306

    Article  Google Scholar 

  • Bleahu M, Soroiu M, Catilina R (1984) On the Cretaceous tectonomagmatic evolution of the Apuseni Mountains as revealed by K–Ar dating. Rev Roum Phys 29:123–130

    Google Scholar 

  • Blundy J, Robinson J, Wood B (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Bogaerts M (1998) Etude pétrographique et géochimique des dykes autour des intrusions de Biella et de Traversella (Alpes Nord-Occidentales, Italie). Master Thesis, University of Liège, Liège, 65 pp

  • Bogaerts M, Vander Auwera J (1999) Potassic and ultrapotassic dikes around the plutons of Biella and Traversella. In: Fourth Hutton symposium on the origin of granites and related rocks (Clermont-Ferrand, France), vol 290, p 46

  • Bortolotti V, Marroni M, Nicolae I, Pandolfi L, Principi G, Saccani E (2002) Geodynamic implications of jurassic ophiolites associated with Island-Arc volcanics, South Apuseni Mountains, Western Romania. Int Geol Rev 44(10):938–955

    Article  Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Paleogeogr Paleoclimatol Paleoecol 210:1–56

    Article  Google Scholar 

  • Dal Piaz G, Venturelli G, Scolari A (1979) Calc-alkaline to ultrapotassic postcollisional volcanic activity in the internal northwestern Alps. Mem Sci Geol 32:4–15

    Google Scholar 

  • De Paolo DJ (1981) Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • De Paolo DJ, Wasserburg G (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett 3:743–746

    Article  Google Scholar 

  • Defant M, Kepezhinskas P (2001) Adakites: a review of slab melting over the past decade and the case for a slab-melt component in arcs. EOS Trans Am Geophys Union 82:68–69

    Article  Google Scholar 

  • Dostal J, Dupuy C, Carron JP, Dekerneizon ML, Maury RC (1983) Partition coefficients of trace elements-application to volcanic rocks of St-Vincent, West-Indies. Geochim Cosmochim Acta 47(3):525–533

    Article  Google Scholar 

  • Duchesne JC (1978) Quantitative modeling of Sr, Ca, Rb and K in the Bjerkrem-Sogndal layered lopolith (S.W. Norway). Contrib Mineral Petrol 66:175–184

    Article  Google Scholar 

  • Duchesne JC, Berza T, Liégeois J-P, Vander Auwera J, Demaiffe D, Andar P, Tatu M, Teleman C, Stan N, Iancu V (1997) Geochemistry of Romanian granites, University of Liège, CIPA-CT93-0237, p 158

  • Duchesne JC, Liégeois J-P, Iancu V, Berza T, Matukov DI, Tatu M, Sergeev SA (2008) Post-collisional melting of crustal sources: constraints from geochronology, petrology and Sr, Nd isotope geochemistry of the Variscan Sichevita and Poniasca granitoid plutons (South Carpathians, Romania). Int J Earth Sci 97(4):705–723

    Article  Google Scholar 

  • Dupont A, Vander Auwera J, Pin C, Marincea S, Berza T (2002) Trace element and isotope (Sr, Nd) geochemistry of porphyry- and skarn-mineralising Late Cretaceous intrusions from Banat, western South Carpathians, Romania. Miner Depos 37(6–7):568–586

    Article  Google Scholar 

  • Ersoy Y, Helvaci C (2010) FC-AFC-FCA and mixing modeler: a microsoft EXCEL spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Comput Geosci 36:383–390

    Article  Google Scholar 

  • Esperança S, Carlson R, Shirey S, Smith D (1997) Dating crust-mantle separation: Re–Os isotopic study of mafic xenoliths from central Arizona. Geology 25(7):651–654

    Article  Google Scholar 

  • Ewart A, Griffin W (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    Article  Google Scholar 

  • Ewart A, Bryan W, Gill J (1973) Mineralogy and geochemistry of the Younger Volcanic Islands of Tonga, SW Pacific. J Petrol 14(3):429–465

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, New York

    Google Scholar 

  • Fourcade S, Allègre CJ (1981) Trace elements behaviour in granite genesis: a case study, the calc-alkaline plutonic association from the Quérigut complex (Pyrénées, France). Contrib Mineral Petrol 76:177–195

    Article  Google Scholar 

  • Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49(11):1955–1969

    Article  Google Scholar 

  • Frost BR, Arculus RJ, Barnes CG, Collins WJ, Ellis DJ, Frost CD (2001) A geochemical classification of granitic rock suites. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Fujimaki H (1986) Partition coefficients of Hf, Zr, and REE between zircon, apatite and liquid. Contrib Mineral Petrol 94(1):42–45

    Article  Google Scholar 

  • Georgiev S, Von Quadt A, Heinrich C, Peytcheva I, Marchev P (2012) Time evolution of a rifted continental arc: integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria. Lithos 154:53–67

    Article  Google Scholar 

  • Gesels J (2003) Pétrologie et géochimie des banatites des Monts Apuseni (Roumanie). Master thesis Thesis, Liège, 100 pp

  • Gill J (1981) Orogenic andesites and plate tectonics. Minerals and rocks, Springer, Berlin, Heidelberg 16:392

  • Giuşcǎ D, Istrate G, Ştefan A (1969) Le complexe volcano-plutonique de la Vlǎdeasa (Roumanie). Bull Volcanol XXXIII(4):13–45

    Google Scholar 

  • Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396

    Article  Google Scholar 

  • Grove T, Till C, Krawczynski M (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439

    Article  Google Scholar 

  • Harris N, Pearce J, Tindle A (1986) Geochemical characteristics of collision-zone magmatism. In: Coward M, Ries A (eds) Collision tectonics. Geological Society Special Publication n°9, Blackwell Scientific Publications, London, pp 67–81

    Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Horn I, Foley S, Jackson S, Jenner G (1994) Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chem Geol 117:193–218

    Article  Google Scholar 

  • Ionescu C (1997) Studiul metalogenetic al masivelor banatitice Budureasa şi Pietroasa (Munţii Bihor). PhD Thesis, Babeş–Bolyai, Cluj Napoca

  • Irvine T, Baragar W (1971) A guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:315–341

    Article  Google Scholar 

  • Istrate G (1978) Petrological study of the Vlădeasa Massif (western part). Anu Inst Geol Geofiz 53:1–297

    Google Scholar 

  • Jacobsen S, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium in hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841

    Article  Google Scholar 

  • Joron JL, Bougault H, Wood D, Treuil M (1978) Application de la géochimie des éléments en traces à l’étude des propriétés et des processus de genèse de la croûte océanique et du manteau supérieur. Bull Soc Géol Fr XX(4):521–531

    Article  Google Scholar 

  • Kagami H, Ulmer P, Hansmann W, Dietrich V, Steiger R (1991) Nd–Sr isotopic and geochemical characteristics of the southern Adamello (northern Italy) intrusives: implications for crustal versus mantle origin. J Geophys Res 96:14331–14346

    Article  Google Scholar 

  • Klötzli U, Buda G, Skiöld T (2004) Zircon typology, geochronology and whole rock Sr–Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary). Mineral Petrol 81:113–134

    Article  Google Scholar 

  • Kohut M, Stein H, Uher P, Zimmermann A, Hraško L (2013) Re–Os and U–Th–Pb dating of the Rochovce granite and its mineralization (Western Carpathians, Slovakia). Geol Carpath 64:71–79

    Article  Google Scholar 

  • Kolb M, Von Quadt A, Peytcheva I, Heinrich CA, Fowler SJ, Cvetkovic V (2013) Adakite-like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc. J Petrol 54(3):421–451

    Article  Google Scholar 

  • Kounov A, Schmid S (2013) Fission-track constraints on the thermal and tectonic evolution of the Apuseni mountains (Romania). Int J Earth Sci 102:207–233

    Article  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford, p 193

    Google Scholar 

  • Leake B, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineral Mag 68(1):209–215

    Article  Google Scholar 

  • Liégeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45:1–28

    Article  Google Scholar 

  • Luhr J, Carmicahel I (1980) The Colima volcanic complex, Mexico. I: post-caldera andesites from Volcan Colima. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Macera P, Ferrara G, Pescia A, Callegari E (1983) A geochemical study on the acid and basic rocks of the Adamello batholith. Mem Soc Geol Ital 26:223–259

    Google Scholar 

  • Martin H (1987) Petrogenesis of Archean trondhjemites, tonalites, and granodiorites from Eastern Finland: major and trace element geochemistry. J Petrol 28(5):921–953

    Article  Google Scholar 

  • McKay G (1989) Partitioning of rare earth elements between major silicate minerals and basaltic melts. In: Lipin, B, McKay, G. (eds), Geochemistry and mineralogy of REE. Mineralogical Society of America, Reviews in mineralogy, pp 45–77

  • Miyashiro A (1978) Nature of alkalic volcanic rock series. Contrib Mineral Petrol 66:91–104

    Article  Google Scholar 

  • Morimoto N (1989) Nomenclature of pyroxenes. Can Mineral 27:143–156

    Google Scholar 

  • Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Article  Google Scholar 

  • Nagasawa H (1973) Rare earth distribution in alkali rocks from Oki-Dogo Island, Japan. Contrib Mineral Petrol 39:301–308

    Article  Google Scholar 

  • Nagasawa H, Schnetzler C (1971) Partitioning of rare Earth, alkali, and alkaline Earth elements between phenocrysts and acidic igneous magmas. Geochim Cosmochim Acta 35:953–968

    Article  Google Scholar 

  • Nakamura Y, Fujimaki H, Nakamura N, Tatsumoto M (1986) Hf, Zr, and REE partition coefficients between ilmenite and liquid: implications for lunar petrogenesis. In: Proceedings of the 16th lunar and planetary science conference, pp D239–D250

  • Neubauer F (2002) Contrasting Late Cretaceous with Neogene ore provinces in the Alpine–Balkan–Carpathians–Dinaride collision belt. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, London, pp 90–100

    Google Scholar 

  • Nicolae I, Seghedi I, Boboş I, do Rosarrio Azevedo M (2014) Permian volcanic rocks from the Apuseni Mountains (Romania): geochemistry and tectonic constraints. Chem Erde 74:125–137

    Article  Google Scholar 

  • Nicolescu S, Cornell D, Bojar A (1999) Age and tectonic setting of Bocşa and Ocna de Fier-Dognecea granodiorites (southwest Romania) and of associated skarn mineralisation. Miner Depos 34:743–753

    Article  Google Scholar 

  • Pană D, Heaman L, Creaser R, Erdmer P (2002) Pre-Alpine crust in the Apuseni Mountains, Romania: insights from Sm–Nd and U–Pb data. J Geol 110:341–354

    Article  Google Scholar 

  • Panaiotu C (1998) Paleomagnetic constraints on the geodynamic history of Romania. In: Sledzinski J, Ioane D (eds) Monograph of Southern Carpathians. Institute of Geodesy and Geodetic Astronomy, Warsaw University, pp 205–216

  • Pavelescu L, Pop G, Weisz E, Popescu G (1985) La nature et l’âgee du batholite banatitique de Bihor. In: XIII-th congress of KBGA, Cracow, Poland

  • Pearce J (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C, Norry M (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce J, Peate D (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pearce J, Harris N, Tindle A (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983

    Article  Google Scholar 

  • Peccerillo A, Martinotti G (2006) The western mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18(2):109–117

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Philpotts J, Schnetzler C (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34(3):307–322

    Article  Google Scholar 

  • Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89

    Article  Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217

    Article  Google Scholar 

  • Plank T, Langmuir C (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362:739–743

    Article  Google Scholar 

  • Popov P (1981) Magmatectonic features of the Banat-Srednogorie Belt. Geol Balc 11:42–73

    Google Scholar 

  • Popov P, Berza T, Grubic A, Ioane D (2002) Late Cretaceous Apuseni–Banat–Timok–Srednogorie (ABTS) Magmatic and Metallogenic belt in the Carpathian–Balkan orogen. Geol Balc 32(2–4):145–164

    Google Scholar 

  • Rǎdulescu D, Sǎndulescu M (1973) The plate-tectonics concept and the geological structure of the Carpathians. Tectonophysics 16:155–161

    Article  Google Scholar 

  • Rudnick R, Gao S (2003) The Composition of the continental crust. In: Rudnick RL (ed) The Crust, vol 3. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp 1–64

  • Savu H (1996) Genesis and structure of the Mureş zone. Anu Inst Geol Rom 69:179–180

    Google Scholar 

  • Schmid S, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Schuller V (2004) Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania), Tübingen, 112 pp

  • Schuller V, Frisch W, Danišik M, Dunkl I, Melinte M (2009) Upper Cretaceous Gosau deposits of the Apuseni Mountains (Romania)—similarities and differences to the Eastern Alps. Austrian J Earth Sci 102:133–145

    Google Scholar 

  • Sisson T (1994) Hornblende-melt trace element partitioning measured by ion microprobe. Chem Geol 117(1–4):331–344

    Article  Google Scholar 

  • Stefan A (1980) Petrographic study of the eastern part of the Vladeasa eruptive massif. Annu Inst Geol Geofiz 55:208–325

    Google Scholar 

  • Stefan A, Lazar C, Intorsureanu I, Horvath A, Gheorghita I, Bratosin I, Serbanescu A, Calinescu E (1982) Petrological study of the banatitic eruptive rocks in the eastern part of the Gilau Mountains. D.S. Inst Geol Geofiz 69(1):215–246

    Google Scholar 

  • Stefan A, Rosu E, Andar A, Robu L, Robu N, Bratosin I, Grabari G, Stoian M, Vajdea E (1992) Petrological and geochemical features of banatitic magmatites in northern Apuseni Mountains. Rom J Petrol 75:97–115

    Google Scholar 

  • Steiger R, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A, Norry M (eds) Magmatism in the ocean basins., Geological Society Special PublicationBlackwell Scientific Publications, Oxford, pp 313–345

    Google Scholar 

  • Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Article  Google Scholar 

  • Ulmer P, Callegari E, Sonderegger U (1983) Genesis of the mafic and ultramafic rocks and their genetical relations to the tonalitic-trondhjemitic granitoids of the southern part of the Adamello batholith (Northern Italy). Mem Soc Geol Ital 26:171–222

    Google Scholar 

  • Vander Auwera J, Bologne G, Roelandts I, Duchesne JC (1998) Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of silicate rocks and minerals. Geol Belgi 1(1):49–53

    Google Scholar 

  • Venturelli G, Thorpe R, Dal Piaz G, Del Moro A, Potts P (1984) Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contrib Mineral Petrol 86:209–220

    Article  Google Scholar 

  • Villemant B (1988) Trace element evolution in the Phlegrean fields (central Italy)—fractional crystallization and selective enrichment. Contrib Mineral Petrol 98(2):169–183

    Article  Google Scholar 

  • von Blanckenburg F, Früh-Green G, Diethelm K, Stille P (1992) Nd-, Sr-, O-isotopic and chemical evidence for a two-stage contamination history of mantle magma in the Central-Alpine Bergell intrusion. Contrib Mineral Petrol 110:33–45

    Article  Google Scholar 

  • von Blanckenburg F, Kagami H, Deutsch A (1998) The origin of Alpine plutons along the Periadriatic Lineament. Schweiz Mineral Petrogr Mitt 78(1):55–66

    Google Scholar 

  • Von Cotta B (1864) Erzlagerstätten im Banat und in Serbien. Braumüller, Wien, 108 pp

  • Von Quadt A, Moritz R, Peytcheva I, Heinrich C (2005) Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geol Rev 27:95–126

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wiesinger M, Neubauer F, Peytcheva I, von Quadt A, Berza T (2007) Geochemical characteristics of Surduc pluton (Upper Cretaceous), Romania: significance for banatite magmatism. In: Andrew C (ed) Digging deeper. Proceedings of the ninth biennial SGA meeting, Dublin, Ireland pp 913–916

  • Willingshofer E, Neubauer F, Cloetingh S (1999) The significance of Gosau-type basins for the Late Cretaceous tectonic history of the Alpine-carpathian belt. Phys Chem Earth (A) 24(8):687–695

    Article  Google Scholar 

  • Zimmerman A, Stein HJ, Hannah JL, Koželj D, Bogdanov K, Berza T (2008) Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precisions Re–Os molybdenite ages. Miner Deposita 43:1–21

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the CGRI of Belgium to J. Vander Auwera and by FNRS Grants 2.4530.98 and 2.4512.00. It is partly based on the work carried out by J. Gesels during her Master’s degree. The authors would like to thank C. Pin (Université Blaise Pascal, Clermont-Ferrand) for his contribution during the radiogenic isotopes analyses. Careful reviews by N. Bonev and P. Barbey improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Vander Auwera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1a (XLSX 51 kb)

Supplementary material 1b (XLSX 65 kb)

Supplementary material 1c (XLSX 58 kb)

Supplementary material 1d (XLSX 55 kb)

Supplementary material 1e (XLSX 58 kb)

Fig. 1

Comparison of the major element composition of Late Cretaceous igneous rocks from the Apuseni Mts. and Banat (Dupont et al., 2002) with samples from the Adamello (Macera et al., 1983) and Bergell (von Blanckenburg et al., 1992) intrusion from the Alps (EPS 804 kb)

Fig. 2

Comparison of the trace element composition of Late Cretaceous igneous rocks from the Apuseni Mts. and Banat (Dupont et al., 2002) with samples from the Adamello (Macera et al., 1983) and Bergell (von Blanckenburg et al., 1992) intrusion from the Alps (EPS 778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vander Auwera, J., Berza, T., Gesels, J. et al. The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes. Int J Earth Sci (Geol Rundsch) 105, 819–847 (2016). https://doi.org/10.1007/s00531-015-1210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1210-2

Keywords

Navigation