Skip to main content

Advertisement

Log in

Clay mineralogy of the ocean sediments from the Wilkes Land margin, east Antarctica: implications on the paleoclimate, provenance and sediment dispersal pattern

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Core U1359 collected from the continental rise off Wilkes Land, east Antarctica, is analyzed for the clay mineralogy and carbon content. The temporal variation of the clay mineralogical data shows a dominance of illite with chlorite, smectite and kaolinite in decreasing concentration. Clay mineral illite is negatively correlated with smectite which shows enrichment during 6.2–6.8, 5.5–5.8, 4.5 and 2.5 Ma. The mineralogical analyses on the silt size fraction (2–53 μm) of some selected samples were also carried out. The combined result of both the size fractions shows the presence of chlorite and illite in both size fractions, smectite and kaolinite only in clay size fraction (<2 μm) and similarity in the crystallinity and chemistry of illite in both fractions. Similar nature of illite in both fractions suggests negligible role of sorting probably due to the deposition from the waxing ice sheet. During times of ice growth, nearby cratonic east Antarctica shield provided biotite-rich sediments to the depositional site. On the other hand, the presence of smectite, only in the clay size fraction, suggests the effective role of sorting probably due to the deposition from distal source in ice retreat condition. During times of ice retreat, smectite-rich sediment derived from Ross Orogen is transported to the core site through surface or bottom water currents. Poor crystallinity of illite due to degradation further corroborates the ice retreat condition. The ice sheet proximal sediments of U1359 show that in the eastern part of Wilkes Land, the ‘warming’ was initiated during late Miocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley RB, McAyeal DR (1994) Ice-rafted debris associated with binge/purge oscillations of the laurentide ice sheet. Palaeoceanography 9(4):503–512. doi:10.1029/94PA01008

    Article  Google Scholar 

  • Bardin VI (1982) Composition of east Antarctic moraines and some problems of Cenozoic history. In: Craddock C (ed) Antarctic Geoscience Univ. Wisconsin Press, Madison, pp 1069–1076

  • Barker PF (1992) The sedimentary record of Antarctic climate change. Philos Trans R Soc Lond 338:259–267

    Article  Google Scholar 

  • Barker PF (1995) The proximal marine sediment record of Antarctic climate since the Late Miocene. In: Geology and seismic stratigraphy of the Antarctic Margin, Antarctic research series 68:25–57

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  Google Scholar 

  • Caburlotto A (2004) Processi sedimentari di mare profondo sul margine continetale glaciale antarctico. PhD thesis, University of Siena, Italy, pp 143 (unpublished)

  • Chamley H (1989) Clay sedimentology. Springer, Berlin, p 623

    Book  Google Scholar 

  • Claridge GGC (1965) The clay mineralogy and chemistry of some soils from the Ross dependency. Antarct N Z J Geol Geophys 3:186–200

    Article  Google Scholar 

  • Cook CP, van de Flierdt T, Williams T, Hemming SR, Iwai M, Kobayash M, Jimenez-Espejo Francisco J, Escutia C, González JJ, Khim BK, McKay Robert M, Passchier S, Bohaty Steven M, Christina R, Tauxe L, Sugisaki S, Lopez Galindo A, Patterson Molly O, Sangiorgi F, Pierce Elizabeth L, Brinkhuis H, IODP Expedition 318 Scientists (2013) Dynamic behaviour of the east Antarctic ice sheet during Pliocene warmth. Nat Geosci 6:765–769. doi:10.1038/NGEO1889

  • Cooper AK, O’Brien PE and Richter C (eds) (2004) Proc ODP Sci results, 188. Ocean Drilling Program, College Station, TX. doi:10.2973/odp.proc.sr.188.2004

  • Damiani D, Giorgetti G, Turbanti IM (2006) Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene–Quaternary marine sediments from Wilkes Land continental rise (east-Antarctica): paleoenvironmental significance. Mar Geol 226:281–295

    Article  Google Scholar 

  • Denton GH, Hughes TJ (2002) Reconstructing the Antarctic ice sheet at the last glacial maximum. Quat Sci Rev 21:193–202

    Article  Google Scholar 

  • Diester-Haass L, Robert C, Chamley H (1993) Paleoceanographic and palaeoclimatic evolution in the Weddell Sea (Antarctica) during the middle Eocene–late Oligocene, from a coarse sediment fraction and clay mineral data (ODP Site 689). Mar Geol 114:233–250

    Article  Google Scholar 

  • Ehrmann WU (1998a) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 139:213–231

    Article  Google Scholar 

  • Ehrmann WU (1998b) Lower Miocene and quaternary clay mineral assemblages from CRP-1. Terra Antart 5(3):613–619

    Google Scholar 

  • Ehrmann WU, Mackensen A (1992) Sedimentological evidence for the formation of an east Antarctic ice sheet in eocene/oligocene time. Palaeogeogr Palaeoclimatol Palaeoecol 93:85–112

    Article  Google Scholar 

  • Ehrmann WU, Melles M, Kuhn G, Grobe H (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar Geol 107:249–273

    Article  Google Scholar 

  • Ehrmann W, Setti M, Marinoni L (2005) Clay minerals in Cenozoic sediments off Cape Robert (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeogr Palaeoclimatol Palaeoecol 229:187–211

    Article  Google Scholar 

  • Escutia C, Brinkhuis H, Klaus A, IODP Expedition 318 Scientists (2011) IODP Expedition 318: from greenhouse to icehouse at the Wilkes Land Antarctic margin. Science Reports, Scientific Drilling, No 12, Sept 2011. doi:10.2204/iodp.sd.12.02.2011

  • Escutia C, Eittreim SL, Cooper AK (1997) Cenozoic sedimentation on the Wilkes Land continental rise, Antarctica. In: Ricci CA (eds) The Antarctic region: geological evolution and processes. Proceedings of international symposium on Antarctic earth science 7, pp 791–795

  • Escutia C, Eittreim SL, Cooper AK, Nelson CH (2000) Morphology and acoustic 385 character of the Antarctic Wilkes Land turbidite systems: ice-sheet-sourced versus river-sourced fans. J Sediment Res 70(1):84–93. doi:10.1306/2DC40900-0E47-11D7-3878643000102C1865D

    Article  Google Scholar 

  • Escutia C, Warnke D, Acton GD, Barcena A, Burckle L, Canals M, Frazee CS (2003) Sediment distribution and sedimentary processes across the Antarctic Wilkes Land margin during the quaternary. Deep-sea Res Part II 50(8–9):1481–1508. doi:10.1016/S0967-0645(03)00073-0

    Article  Google Scholar 

  • Escutia C, De Santis L, Donda F, Dunbar RB, Cooper AK, Brancolini G, Eittreim SL (2005) Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments. Glob Planet Change 45(1–3):51–81. doi:10.1016/j.gloplacha.2004.09.010

    Article  Google Scholar 

  • Esquevin J (1969) Influence de la composition chimique des illites sur le cristallinite´. Bull Centre Rech Pau SNPA 3:147–154

  • Expedition 318 Scientists (2010) Wilkes Land glacial history: Cenozoic east Antarctic Ice Sheet evolution from Wilkes Land margin sediments. IODP Prel Rept 318. doi:10.2204/iodp.pr.318.2010

  • Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC (2003) Patterns and mechanisms of early pliocene warmth. Nature 496:43–49

    Article  Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation, and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108(3–4):537–555. doi:10.1016/0031-0182(94)90251-8

    Article  Google Scholar 

  • Gordon AL, Tchernia P (1972) Waters of the continental margin off Ade´lie coast, Antarctica. In: Hayes DE (ed) Antarctic oceanology II: the Australian—New Zealand Sector. Antarctic research series, American Geophysical Union, Washington, pp 59–69

  • Gradstein FM, Ogg JG, Smith AG (2004) Geologic time scale 2004. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grützner J, Hillenbrand C-D, Rebesco M (2005) Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the Late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage. Glob Planet Change 45(1–3):131–149. doi:10.1016/j.gloplacha.2004.09.004

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Hillenbrand C-D, Ehrmann W (2005) Late Neogene to quaternary environmental changes in the Antarctic Peninsula region: evidence from drift sediments. Glob Planet Change 45(1–3):165–191. doi:10.1016/j.gloplacha.2004.09.006

    Article  Google Scholar 

  • Hultzsch N, Wagner B, Diekmann B, White D (2008) Mineralogical implications for the late Pleistocene glaciation in Amery Oasis, east Antarctica, from a lake sediment core. Antarct Sci 20(2):169–172. doi:10.1017/S0954102007000880

    Article  Google Scholar 

  • Ingólfsson Ó, Hjort C (1999) The Antarctic contribution to Holocene global sea level rise. Polar Res 18:323–330

    Article  Google Scholar 

  • Jacksons ML (1979) Soil chemical analysis—advanced course, 2nd edn, 11th printing. Madison, Wisconsin, pp 169–251

  • Jouzel J, Barkov NI, Barnola JM, Bender M, Chappellaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorious C, Petit JR, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stevenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364:407–411

    Article  Google Scholar 

  • Juntilla J, Strand K (2006) Smectite crystallinity and composition in Pliocene–Pleistocene sediments at the continental rise (ODP Site 1165), Prydz Bay, Antarctica. Terra Antart 13(1/2):23–30

    Google Scholar 

  • Junttila J, Ruikka M, Strand K (2005) Clay mineral assemblages in high-resolution plio-pleistocene interval at odp site 188-1165, Prydz Bay, Antarctica. Glob Planet Change 45:151–163

    Article  Google Scholar 

  • Krantz DE (1991) A chronology of Pliocene se level fluctuations: the U.S. middle Atlantic Coastal Plain record. Quat Sci Rev 10:163–174

    Article  Google Scholar 

  • Macphail MK, and Truswell EM (2004) Palynology of site 1166, Prydz Bay, East Antarctica. In: Cooper AK, O’Brien PE, and Richter C (eds) Proc ODP, Sci Results, 188. Ocean Drilling Program, College station, TX, pp 1–43. doi:10.2973/odp.proc.sr.188.013.2004

  • Ménot RP, Pêcher A, Rolland Y, Peucat JJ, Pelletier A, Duclaux G, Guillot S (2005) Structural setting of the neoarchean terrains in the Commonwealth Bay Area (143–1458E), Terre Ade´lie Craton, East Antarctica. Gondwana Res 8:1–9

    Article  Google Scholar 

  • Oliver RL, Fanning CM (2002) Proterozoic geology east and southeast of Commonwealth Bay, George V land, Antarctica, and its relationship to that of adjacent Gondwana terranes. In: Gamble JA, Skinner DNB, Henry S (eds) Antarctic at the close of a millennium. R Soc N Z Bull 35:51–58

  • Pant NC, Biswas P, Shrivastava Prakash K, Bhattacharya S, and Verma Kamlesh, Pandey Mayuri and IODP Expedition 318 Scientific Party (2013) Provenance of Pleistocene sediments from Site U1359 of the Wilkes Land IODP Leg 318–evidence for multiple sourcing from the East Antarctic craton and Ross orogen. In: Hambrey MJ, Barker PF, Barrett PJ, Bowman V, Davies B, Smellie JLM. Tranter (eds) Antarctic palaeoenvironments and earth–surface processes. Geol Soc Lond, 381, (in press) doi:10.1144/SP381.11

  • Passchier S, O’Brien PE, Damuth JE, Januszczak N, Handwerger DA, Whitehead JM (2003) Pliocene–Pleistocene glaciomarine sedimentation in eastern Prydz Bay, development of the Prydz trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica. Mar Geol 199:279–305. doi:10.1016/S0025-3227(03)00160-9

    Article  Google Scholar 

  • Setti M, Marinoni L, López-Galindo A (2004) Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Miner 39:401–421

    Article  Google Scholar 

  • Shipboard Scientific Party (2001) Leg 188 summary: Prydz Bay–cooperation Sea, Antarctica. In: O’Brien PE, Cooper AK, Richter C et al (eds) Proc ODP Init Repts 188. Ocean Drilling Program, College station TX, pp 1–65

  • Srivastava AK, Khare N, Ingle PS (2008) Characterization of clay minerals in the sediments of Schirmacher Oasis, east Antarctica: their origin and climatological implications. Curr Sci 100(3):363–372

    Google Scholar 

  • Talarico F, Kleinschmidt G (2003) Structural and metamorphic evolution of the Mertz Shear Zone (East Antarctic Craton, George V Land): implications for Australia/Antarctica correlations and East Antarctic Craton/Ross Orogen relationships. Terra Antart Rep 10:229–248

    Google Scholar 

  • Tauxe L, Stickley CE, Sugisaki S, Bijl PK, Bohaty SM, Brinkhuis H, Escutia C, Flores JA, Houben AJP, Iwai M, Jiménez-Espejo F, McKay R, Passchier S, Pross J, Riesselman CR, Röhl U, Sangiorgi F, Welsh K, Klaus A, Fehr A, Bendle JAP, Dunbar R, Gonzàlez J, Hayden T, Katsuki K, Olney MP, Pekar SF, Shrivastava PK, van de Flierdt T, Williams T, Yamane M (2012) Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction. Paleoceanography. doi:10.1029/2012PA002308,2012

  • Veevers JJ, Saeed A (2011) Age and composition of Antarctic bedrock reflected by detrital zircons, erratics, and recycled microfossils in the Prydz Bay–Wilkes Land–Ross Sea–Marie Byrd Land sector (708–2408E). Gondwana Res 20:710–738

    Article  Google Scholar 

  • Wagner B, Cremer H, Hultzsch N, Gore DB, Melles M (2004) Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, east Antarctica, and its climatic and environmental implications. J Paleolimnol 32:321–339

    Article  Google Scholar 

  • Webb PN, Harwood DM (1991) Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quaternary Sci Rev 10:215–224

    Article  Google Scholar 

  • Webb PN, Harwood DM, McKelvey BC, Mercer JH, Stott LD (1984) Cenozoic marine sedimentation and ice volume variation on east Antarctic craton. Geology 12:287–291

    Article  Google Scholar 

  • Whiehead JM, Quilty JM, Harwood DM, McMinn A (2001) Early Pliocene palaeoenvironment of the Sorsdal Formation, Vestfold Hills, based on diatom data. Mar Micropaeont 41:125–152

    Article  Google Scholar 

  • Whitehead JM, Bohaty SM (2003) Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165. Paleoceanography 18(3):1075. doi:10.1029/2002PA000829

    Article  Google Scholar 

  • Yoon HI, Park BK, Kim Y, Kim D (2000) Glaciomarine sedimentation and its paleoceanographic implications along the fjord margin in the South Shetland Islands, Antarctica during the last 6000 years. Palaeogeogr Palaeoclimatol Palaeoecol 157:189–211

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature (Lond UK) 451:279–283. doi:10.1038/nature06588

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Director General and Deputy Director General, Geological Survey of India for providing facilities. The authors also thank Shri Basab Chattopadhyay and R.K. Agarwal Director, Geology, Geological Survey of India, Faridabad, for their constant support. This research used samples and data provided by Integrated Ocean Drilling Program (IODP). The National Centre for Antarctic and Ocean Research (NCAOR) funded the project ‘Paleoclimatic and magmato-metamorphic history of Wilkes Land, East Antarctica: constraints from accessory minerals, clay mineralogy and micropaleontology in oceanic sediments’ under which this work was carried out.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N. C. Pant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, K., Bhattacharya, S., Biswas, P. et al. Clay mineralogy of the ocean sediments from the Wilkes Land margin, east Antarctica: implications on the paleoclimate, provenance and sediment dispersal pattern. Int J Earth Sci (Geol Rundsch) 103, 2315–2326 (2014). https://doi.org/10.1007/s00531-014-1043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1043-4

Keywords

Navigation