Skip to main content
Log in

Variability over time in the sources of South Portuguese Zone turbidites: evidence of denudation of different crustal blocks during the assembly of Pangaea

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study combines geochemical and geochronological data in order to decipher the provenance of Carboniferous turbidites from the South Portuguese Zone (SW Iberia). Major and trace elements of 25 samples of graywackes and mudstones from the Mértola (Visean), Mira (Serpukhovian), and Brejeira (Moscovian) Formations were analyzed, and 363 U-Pb ages were obtained on detrital zircons from five samples of graywackes from the Mira and Brejeira Formations using LA-ICPMS. The results indicate that turbiditic sedimentation during the Carboniferous was marked by variability in the sources, involving the denudation of different crustal blocks and a break in synorogenic volcanism. The Visean is characterized by the accumulation of immature turbidites (Mértola Formation and the base of the Mira Formation) inherited from a terrane with intermediate to mafic source rocks. These source rocks were probably formed in relation to Devonian magmatic arcs poorly influenced by sedimentary recycling, as indicated by the almost total absence of pre-Devonian zircons typical of the Gondwana and/or Laurussia basements. The presence of Carboniferous grains in Visean turbidites indicates that volcanism was active at this time. Later, Serpukhovian to Moscovian turbiditic sedimentation (Mira and Brejeira Formations) included sedimentary detritus derived from felsic mature source rocks situated far from active magmatism. The abundance of Precambrian and Paleozoic zircons reveals strong recycling of the Gondwana and/or Laurussia basements. A peri-Gondwanan provenance is indicated by zircon populations with Neoproterozoic (Cadomian-Avalonian and Pan-African zircon-forming events), Paleoproterozoic, and Archean ages. The presence of late Ordovician and Silurian detrital zircons in Brejeira turbidites, which have no correspondence in the Gondwana basement of SW Iberia, indicates Laurussia as their most probable source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abati J, Aghzer AM, Gerdes A, Ennih N (2010) Detrital zircon ages of Neoproterozoic sequences of the Moroccan Anti-Atlas belt. Precambr Res 181:115–128

    Article  Google Scholar 

  • Barrie CT, Amelin Y, Pascual E (2002) U-Pb geochronology of VMS mineralization in the Iberian Pyrite Belt. Miner Deposita 37:684–703

    Article  Google Scholar 

  • Braid JA, Murphy JB, Quesada C (2010) Structural analysis of an accretionary prism in a continental collisional setting, the Late Paleozoic Pulo do Lobo Zone, Southern Iberia. Gondwana Res 17:422–439

    Article  Google Scholar 

  • Braid JA, Murphy JB, Quesada C, Mortensen J (2011) Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U-Pb detrital zircon data from the late Palaeozoic Pulo de Lobo and South Portuguese Zones, Southern Iberia. J Geol Soc London 168:383–392

    Article  Google Scholar 

  • Burnett DJ, Quirk DG (2001) Turbidite provenance in the Lower Palaeozoic Manx Group, Isle of Man: implications for the tectonic setting of Eastern Avalonia. J Geol Soc 158:913–924

    Article  Google Scholar 

  • Chichorro M, Pereira MF, Díaz-Azpíroz M, Williams IS, Fernández C, Pin C, Silva JB (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U-Th–Pb geochronology. Tectonophysics 461:91–113

    Article  Google Scholar 

  • de la Rosa JD, Jenner GA, Castro A (2002) A study of inherited zircons in granitoid rocks from the South Portuguese and Ossa–Morena Zones, Iberian Massif: support for the exotic origin of the South Portuguese Zone. Tectonophysics 352:245–256

    Article  Google Scholar 

  • Díaz García F, Arenas R, Martínez Catalán JR, González del Tánago J, Dunning G (1999) Tectonic evolution of the Careón ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt. J Geol 107:587–605

    Article  Google Scholar 

  • Díez-Fernández R, Martínez Catalán JR, Gerdes A, Abati J, Arenas R, Fernández-Suárez J (2010) U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Res 18(2–3):385–399. doi:10.1016/j.gr.2009.12.006

    Google Scholar 

  • Dunning GR, Díez Montes A, Matas J, Martín Parra LM, Almarza J, Donaire M (2002) Geocronología U/Pb del volcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa). Geogaceta 32:127–130

    Google Scholar 

  • Eguíluz L, Gil-Ibarguchi JI, Abalos B, Apraíz A (2000) Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. Geol Soc Am Bull 112:1398–1413

    Google Scholar 

  • Fernandes P, Jorge RCGS, Oliveira JT, Pereira Z, Rodrigues B (2010) Análise de proveniência dos sedimentos siliciclásticos do Grupo do Flysch do Baixo Alentejo, Zona Sul Portuguesa. VIII Congresso Nacional de Geologia, Universidade do Minho, e-Terra, 13(2):1–4

  • Fernández-Suárez J, Gutiérrez-Alonso G, Jeffries TE (2002) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet Sci Lett 204(1–2):75–88

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries T, Jenner GA, Cox R, Jackson SE (2003) Terrane accretion and dispersal in the northern Gondwana margin. An early Paleozoic analogue of a long-lived active margin. Tectonophysics 365:221–232

    Article  Google Scholar 

  • Hirdes W, Davis DW (2002) U-Pb geochronology of Paleoproterozoic rocks in the southern part of the Kedougou-Kenieba inlier, Senegal, West Africa: evidence for diachronous accretionary development of the Eburnean Province. Precambr Res 118:83–99

    Article  Google Scholar 

  • Jesus A, Munhá J, Mateus A, Tassinari C, Nutman A (2007) The Beja layered gabbroic sequence (Ossa–Morena Zone, Southern Portugal): geochronology and geodynamic implications. Geodin Acta 20:139–157

    Article  Google Scholar 

  • Keppie JD, Krogh TE (2000) 440 Ma igneous activity in the Meguma terrane, Nova Scotia, Canada: part of the Appalachian overstep sequence? Am J Sci 300:528–538

    Article  Google Scholar 

  • Key RM, Loughlin SC, Gillespie M, Del Rio M, Horstwood MSA, Crowley QG, Darbyshire DPF, Pitfield PEJ, Henney PJ (2008) Two Mesoarchean terranes in the Reguibat shield of NW Mauritania. Geol Soc Lond Spec Publ 297(1):33–52

    Article  Google Scholar 

  • Koulamelan AN, Delor C, Peucat JJ (1997) Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Côte d’Ivoire (Man Rise, West African craton). Precambr Res 86:177–199

    Article  Google Scholar 

  • Liégeois JP, Claessens W, Camara D, Klerkx J (1991) Short-lived Eburnian orogeny in southern Mali. Geology, Tectonics, U-Pb and Rb–Sr geochronology. Precambr Res 50(1–2):111–136

    Article  Google Scholar 

  • Lima SM, Corfu F, Neiva AMR, Ramos MF (2012) Dissecting complex magmatic processes: an in-depth U-Pb Study of the Pavia Pluton, Ossa-Morena Zone, Portugal. J Petrol 53(9):1887–1911

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA-ICPMS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian Zone, NE Bohemian Massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision, 423. Geological Society of America, Special Paper, pp 61–96

  • Linnemann U, Pereira MF, Jeffries T, Drost K, Gerdes A (2008) Cadomian Orogeny and the opening of the Rheic Ocean: new insights in the diachrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Article  Google Scholar 

  • MacDonald LA, Barr SM, White CE, Ketchum JWF (2002) Petrology, age, and tectonic setting of the White Rock Formation, Meguma terrane, Nova Scotia: evidence for Silurian continental rifting. Can J Earth Sci 39:259–277

    Article  Google Scholar 

  • Marques FO, Burg JP, Lechmann SM, Schmalholz SM (2010) Fluid-assisted particule flow of turbidites at very low temperature: a key to tight folding in a submarine Variscan foreland basin of SW Europe. Tectonics 29, TC2005. doi:10.1029/2008TC002439

  • Martínez-Catalán JR, Arenas R, Díaz García F, Gómez-Barreiro J, González Cuadra P, Abati J, Castiñeiras P, Fernández-Suárez J, Sánchez Martínez S, Andonaegui P, González Clavijo E, Díez Montes A, Rubio Pascual FJ, Valle Aguado B (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the comprehension of the Variscan belt. In: Hatcher Jr, RD, Carlson MP, McBride JH Martínez-Catalán JR (eds) 4-D Framework of Continental Crust: Geological Society of America Memoir, 200

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate:a review. Terra Nova 13:122–128

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonics associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • McLennan SM, Bock B, Hemming R, Hurowitz JA, Lev SM, McDaniel DK (2003) The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks. Geological Association of Canada, pp 7–38

  • Meinhold G, Morton AC, Avigad D (2012) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U-Pb ages. Gondwana Res 23(2):661–665

    Article  Google Scholar 

  • Moran PC, Barr SM, White CE, Hamilton MA (2007) Petrology, age, and tectonic setting of the Seal Island Pluton, offshore southwestern Nova Scotia. Can J Earth Sci 44:1467–1478

    Article  Google Scholar 

  • Munhá J, Oliveira J, Ribeiro A, Oliveira V, Quesada C, Kerrich R (1986) Beja-Acebuches Ophiolite: characterization and geodynamic significance. Maleo 2:13–31

    Google Scholar 

  • Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernández-Suárez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328

    Article  Google Scholar 

  • Murphy JB, van Staal CR, Collins WJ (2011) A comparison of the evolution of arc complexes in Paleozoic interior and peripheral orogens: speculations on geodynamic correlations. Gondwana Res 19(3):812–827

    Article  Google Scholar 

  • Nagy EA, Samson SD, D’Lemos RS (2002) U-Pb geochronological constraints on the timing of Brioverian sedimentation and regional deformation in the St. Brieuc region of the Neoproterozoic Cadomian orogen, northern France. Precambr Res 116:1–17

    Article  Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’Lemos R, Pisarevsky SA (2008) Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: amazonian vs West African connections. Geol Soc Lond Spec Publ 297(1):345–383

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17(2–4):194–222

    Article  Google Scholar 

  • Oliveira JT (1983) The marine Carboniferous of South Portugal: a stratigraphic and sedimentological approach. In: Lemos de Sousa MJ, Oliveira JT (eds) The Carboniferous of Portugal, Serviços Geológicos de Portugal 29, 3–38

  • Oliveira JT (1984) Carta Geológica de Portugal à escala 1:200 000. Notícia explicativa da Folha 7

  • Oliveira JT (1990) Stratigraphy and syn-sedimentary tectonism in the South Portuguese Zone. In: Dallmeyer RD, Martínez García E (eds) Pre-Mesozoic Geology of Iberia, pp 334–347

  • Onezine J, Charvet J, Faure M, Bourdier J, Chauvet A (2003) A new geodynamic interpretation for the South Portuguese Zone (SW Iberia) and the Iberian Pyrite Belt genesis. Tectonics 22:1–16

    Google Scholar 

  • Pastor-Galán D, Gutiérrez-Alonso G, Murphy JB, Fernández-Suárez J, Hofmann M, Linnemann U (2012) Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: passive margin to Variscan collision and orocline development. Gondwana Res 23(3):1089–1103

    Article  Google Scholar 

  • Pereira MF, Chichorro M, Linnemann U, Eguiluz L, Silva JB (2006) Inherited arc signature in Ediacaran and Early Cambrian basins of the Ossa-Morena Zone (Iberian Massif, Portugal): paleogeographic link with European and North African Cadomian correlatives. Precambr Res 144:297–315

    Article  Google Scholar 

  • Pereira MF, Silva JB, Chichorro M, Moita P, Santos JF, Apraiz A, Ribeiro C (2007a) Crustal growth and deformational processes in the northern Gondwana margin: constraints from the Évora Massif (Ossa–Morena Zone, southwest Iberia, Portugal). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from avalonian–cadomian active margin to Alleghenian–Variscan Collision: Boulder, Colorado: Geological Society of America Special Paper, 423, pp 333–358

  • Pereira Z, Matos J, Fernandes P, Oliveira JT (2007b) Devonian and Carboniferous palynostratigraphy of the South Portuguese Zone, Portugal: an overview. Comunicações Geológicas 94:53–79

    Google Scholar 

  • Pereira MF, Chichorro M, Williams IS, Silva JB (2008) Zircon U–Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): evidence for a paleogeographic link between the Ossa-Morena Ediacaran basins and the West African craton. In: JP Liégeois, E Nasser (eds) The Boundaries of the West African Craton, vol 297. Geological Society of London Special Publication, pp 385–408

  • Pereira MF, Chichorro M, Williams IS, Silva JB, Fernández C, Díaz-Azpíroz M, Apraiz A, Castro A (2009) Variscan intra-orogenic extensional tectonics in the Ossa–Morena Zone (Évora–Aracena–Lora del Rio metamorphic belt, SW Iberian Massif): SHRIMP zircon U–Th–Pb geochronology. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient Orogens and Modern Analogues: Geological Society, London, Special Publications, 327, pp 215–237

  • Pereira MF, Chichorro M, Solá AR, Silva JB, Sánchez-García T, Bellido F (2011) Tracing the Cadomian magmatism with detrital/inherited zircon ages by in situ U-Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). Lithos 123:204–217

    Article  Google Scholar 

  • Pereira MF, Linnemann U, Hofmann M, Chichorro M, Solá AR, Medina J, Silva JB (2012a) The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Precambr Res 192–195:166–189

    Article  Google Scholar 

  • Pereira MF, Solá AR, Chichorro M, Lopes L, Gerdes A, Silva JB (2012b) North-Gondwana assembly, break-up and paleogeography: U-Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Res 22(3–4):866–881

    Article  Google Scholar 

  • Pereira MF, Chichorro M, Johnston ST, Gutiérrez-Alonso G, Silva JB, Linnemann U, Hofmann M, Drost K (2012c) The missing Rheic Ocean magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Res 3–4(22):882–891

    Article  Google Scholar 

  • Pereira MF, Chichorro M, Silva JB, Ordóñez-Casado B, Lee JKW, Williams IS (2012d) Early Carboniferous wrenching, exhumation of high-grade metamorphic rocks and basin instability in SW Iberia: constraints derived from structural geology and U-Pb and 40Ar–39Ar geochronology. Tectonophysics 558–559:28–44

    Article  Google Scholar 

  • Pin C, Paquette JL, Santos Zalduegui JF, Gil Ibarguchi JI (2002) Early Devonian supra-subduction ophiolite related to incipient collisional processes in theWestern Variscan Belt: the Sierra Careón unit, Órdenes Complex, Galicia. In: Martínez Catalán JR, Hatcher RD, Arenas R, Díaz García F (eds) Variscan–appalachian dynamics: the building of the late Paleozoic Basement: Geological Society of America Special Paper, 364, pp 57–71

  • Potrel A, Peucat JJ, Fanning CM, Auvray B, Burg JP, Caruba C (1996) 3.5 Ga old terranes in the West African craton, Mauritania. J Geol Soc 153(4):507–510

    Article  Google Scholar 

  • Quesada C, Robardet M, Gabaldón V (1990) Ossa-Morena zone- stratigraphy: synorogenic phase (upper devonian-carboniferous-lower permian). In: Dallmeyer RD, MartínezGarcía E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 273–279

    Google Scholar 

  • Quesada C, Dallmeyer RD, Gil-Ibarguchi I, Oliveira JT, Pérez-Estaún A, Ribeiro A, Robardet M, Silva JB (1991) Terranes within the Iberian Massif: correlations with West African sequences. In: Dallmeyer RD, Lecorché JP (eds) The West African Orogens and circum-atlantic correlatives. Springer, Berlin, pp 267–293

    Chapter  Google Scholar 

  • Quesada C, Fonseca P, Munhá J, Oliveira J, Ribeiro A (1994) The Beja-Acebuches Ophiolite: geological characterization and geodynamic significance. Boletín Geológico y Minero 105:3–49

    Google Scholar 

  • Ribeiro A, Quesada C, Dallmeyer RD (1990) Geodynamic evolution of the Iberian Massif. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 399–409

    Chapter  Google Scholar 

  • Robardet M, Gutiérrez-Marco JC (2004) The Ordovician, Silurian and Devonian sedimentary rocks of the Ossa-Morena Zone (SW Iberian Peninsula, Spain). J Iberian Geol 30:73–92

    Google Scholar 

  • Rogers N, Van Staal C, McNicoll V, Pollock J, Zagorevski A, Whalen J (2006) Neoproterozoic and Cambrian arc magmatism along the eastern margin of the Victoria Lake Supergroup: a remnant of Ganderian basement in central Newfoundland? Precambr Res 147:320–341

    Article  Google Scholar 

  • Rosa DRN, Finch AA, Andersen T, Inverno CMC (2008) U-Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineral Petrol 95:47–69

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2-content and K2O/Na2O ratio. J Geol 94:635–651

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant functions analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Sánchez Martínez S, Arenas R, Díaz García F, Martínez Catalán JR, Gómez Barreiro J, Pearce JA (2007) New geochemical data of the Careón Ophiolite: suprasubduction zone setting for the youngest Rheic oceanic floor. Geology 35:53–56

    Article  Google Scholar 

  • Sánchez Martínez S, Arenas R, Fernández-Suárez J, Jeffries T (2009) From Rodinia to Pangea: ophiolites from NW Iberia as witness for a long lived continental margin. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues, vol 327. Geological Society Special Publications, London, pp 317–341

    Google Scholar 

  • Sánchez Martínez S, Arenas R, Gerdes A, Castiñeiras P, Potrel A, Fernández-Suárez J (2011) Isotope geochemistry and revised geochronology of the Purrido Ophiolite (Cabo Ortegal Complex, NW Iberian Massif): devonian magmatism with mixed sources and involved Mesoproterozoic basement. J Geol Soc 168:733–750

    Article  Google Scholar 

  • Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift related volcanism predating the birth of the Rheic Ocean (Ossa-Morena Zone, SW Iberia). Gondwana Res 17(2–4):392–407

    Article  Google Scholar 

  • Santos J, Mata J, Gonçalves F, Munhá J (1987) Contribuição para o conhecimento geológico-petrológico da região de Santa Susana: o complexo vulcano-sedimentar da Toca da Moura. Comunicações dos Serviços Geológicos de Portugal 73(1–2):29–48

    Google Scholar 

  • Silva J, Oliveira J, Ribeiro A (1990) South Portuguese zone structural outline. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 348–362

    Chapter  Google Scholar 

  • Simancas JF, Tahiri A, Azor A, Lodeiro FG, Poyatos DM, Hel Hadi H (2005) The tectonic frame of the Variscan–Alleghanian orogen in Southern Europe and Northern Africa. Tectonophysics 398:181–198

    Article  Google Scholar 

  • Taylor SR, McLannan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge 378 p

    Google Scholar 

  • Thiéblemont D, Goujou JC, Egal E, Cocherie A, Delor C, Lafon JM, Fanning CM (2004) Archean evolution of the Leo Rise and its Eburnean reworking. J Afr Earth Sc 39(3–5):97–104

    Article  Google Scholar 

  • van Staal CR, Whalen JB, Valverde-Vaquero P, Zagorevski A, Rogers N (2009) Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. Geol Soc Lond Spec Publ 327:271–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Pereira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, M.F., Ribeiro, C., Vilallonga, F. et al. Variability over time in the sources of South Portuguese Zone turbidites: evidence of denudation of different crustal blocks during the assembly of Pangaea. Int J Earth Sci (Geol Rundsch) 103, 1453–1470 (2014). https://doi.org/10.1007/s00531-013-0902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0902-8

Keywords

Navigation