Skip to main content
Log in

Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Gulf of Cadiz is an area of mud volcanism and gas venting through the seafloor. In addition, several cold-water coral carbonate mounds have been discovered at the Pen Duick escarpment amidst the El Arraiche mud volcano field on the Moroccan margin. One of these mounds -named Alpha mound- has been studied to examine the impact of the presence of methane on pore-water geochemistry, potential sulphate reduction (SR) rate and dissolved inorganic carbon (DIC) budget of the mound in comparison with off-mound and off-escarpment locations. Pore-water profiles of sulphate, sulphide, methane, and DIC from the on-mound location showed the presence of a sulphate to methane transition zone at 350 cm below the sea floor. This was well correlated with an increase in SR activity. 13C-depleted DIC at the transition zone (−21.9‰ vs. Vienna Pee Dee Belemnite) indicated that microbial methane oxidation significantly contribute to the DIC budget of the mound. The Alpha mound thus represents a new carbonate mound type where the presence and anaerobic oxidation of methane has an important imprint on both geochemistry and DIC isotopic signature and budget of this carbonate mound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Damste JSS, Gottschal JC, Forney LJ, Rouchy JM (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sc Lett 203:195–203

    Article  Google Scholar 

  • Blamart D, Rollion-Bard C, Cuif J-P, Juillet-Leclerc A, Lutringer C, van Weering TCE, Henriet J-P (2005) C and O isotopes in a deep-sea coral (Lophelia pertusa) related to skeletal microstructure. Springer, Brelin

    Google Scholar 

  • Borowski WS, Paull CK, Ussler W (1996) Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24:655–658

    Article  Google Scholar 

  • Borowski WS, Hoehler TM, Alperin MJ, Rodriguez NM, Paull CK (2000) Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the ocean drilling program, scientific results, vol 164, pp 87–99. http://www-odp.tamu.edu/publications/164_SR/VOLUME/CHAPTERS/SR164_09.PDF

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer, Heidelberg

    Google Scholar 

  • Chen Y, Matsumoto R, Paull CK, Ussler W, Lorenson T, Hart P, Winters W (2007) Methane-derived authigenic carbonates from the northern Gulf of Mexico - MD02 cruise. J Geochem Explor 95:1–15

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr-Methods 14:454

    Article  Google Scholar 

  • Costello MJ, McCrea M, Freiwald A, Lundälv T, Jonsson L, Bett BJ, Van Weering TCE, de Haas H, Roberts JM, Allen D (2005) Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. Springer, Brelin

    Google Scholar 

  • De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231

    Article  Google Scholar 

  • Dorschel B, Hebbeln D, Ruggeberg A, Dullo WC, Freiwald A (2005) Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet Sc Lett 233:33–44

    Article  Google Scholar 

  • Dorschel B, Hebbeln D, Ruggeberg A, Dullo C (2007) Carbonate budget of a cold-water coral carbonate mound: propeller mound, porcupine seabight. Int J Earth Sci 96:73–83

    Article  Google Scholar 

  • Duan ZH, Moller N, Greenberg J, Weare JH (1992) The prediction of methane solubility in natural-waters to high ionic-strength from 0-degrees-C to 250-degrees-C and from 0 to 1600 bar. Geochim Cosmochim Acta 56:1451–1460

    Article  Google Scholar 

  • Dullo WC, Flogel S, Ruggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol-Prog Ser 371:165–176

    Google Scholar 

  • Ferdelman TG, Kano A, Williams T, Cragg BA, Frank TD, Gharib JJ, Leonide P, Mangelsdorf K, Sakai S, Samrikin VA, Spivack AJ, Par IES (2006) Scientific drilling of a cold-water carbonate mound: shipboard biogeochemical results from IODP Expedition 307. Geochim Cosmochim Acta 70:A170–A170

    Article  Google Scholar 

  • Foubert A, Depreiter D, Beck T, Maignien L, Pannemans B, Frank N, Blamart D, Henriet JP (2008) Carbonate mounds in a mud volcano province off north-west Morocco: key to processes and controls. Mar Geol 248:74–96

    Article  Google Scholar 

  • Frank N, Ricard E, Lutringer-Paquet A, van der Land C, Colin C, Blamart D, Foubert A, Van Rooij D, Henriet JP, de Haas H, van Weering T (2009) The Holocene occurrence of cold water corals in the NE Atlantic: implications for coral carbonate mound evolution. Mar Geol 266:129–142

    Article  Google Scholar 

  • Fry JC (1988) Determination of biomass. In: Austin B (ed) Methods in aquatic bacteriology. Wiley, Chichester, pp 27–72

    Google Scholar 

  • Gieskes JM, Gamo T, Brumsack H (1991) Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15 Available from World Wide Web: <http://www- odp.tamu.edu/publications/tnotes/tn15/f_chem1.htm>

  • Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microb 71:3725–3733

    Article  Google Scholar 

  • Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P (1998) Porcupine-Belgica 97 shipboard party, gas hydrate crystals may help build reefs. Nature 391:648–649

    Article  Google Scholar 

  • Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhaes VH, Bruckmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz – indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248

    Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment - evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463

    Article  Google Scholar 

  • Huvenne VAI, Croker PF, Henriet JP (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova 14:33–40

    Article  Google Scholar 

  • Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate methane transition in marine-sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955

    Article  Google Scholar 

  • Jorgensen BB, Bottcher ME, Luschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta 68:2095–2118

    Article  Google Scholar 

  • Kallmeyer J, Ferdelman TG, Weber A, Fossing H, Jorgensen BB (2004) A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr-Methods 2:171–180

    Google Scholar 

  • Kenyon NH, Ivanov MK, Akhmetzhanov AM, Akhmanov GG (2002) Geological processes in the Mediterranean and Black Seas and North East Atlantic. IOC Technical Series No. 62, UNESCO

  • Kenyon NH, Akhmetzhanov AM, Wheeler AJ, van Weering TCE, de Haas H, Ivanov MK (2003) Giant carbonate mud mounds in the southern Rockall Trough. Mar Geol 195:5–30

    Article  Google Scholar 

  • Kenyon NH, Ivanov MK, Akhmetzhanov AM, Akhmanov GG (2006) Interdisciplinary geoscience studies of the Gulf of Cadiz and Western Mediterranean basins. IOC Technical Series No. 70, UNESCO

  • Knab NJ, Cragg BA, Hornibrook ERC, Holmkvist L, Pancost RD, Borowski C, Parkes RJ, Jorgensen BB (2009) Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences 6:1505–1518

    Article  Google Scholar 

  • Leon R, Somoza L, Medialdea T, Maestro A, Diaz-del-Rio V, Fernandez-Puga MD (2006) Classification of sea-floor features associated with methane seeps along the Gulf of Cadiz continental margin. Deep-Sea Res Part II-Top Stud Oceanogr 53:1464–1481

    Article  Google Scholar 

  • Loveley D (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, Dworkin M (eds) The prokaryotes, 3rd edn. 2, 635–658

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances. Geochim Cosmochim Acta 67:3403–3421

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sc Lett 221:337–353

    Article  Google Scholar 

  • Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106

    Article  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196

    Article  Google Scholar 

  • Niemann H, Duarte J, Hensen C, Omoregie E, Magalhaes VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70:5336–5355

    Article  Google Scholar 

  • Niewohner C, Hensen C, Kasten S, Zabel M, Schulz HD (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta 62:455–464

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in pacific-ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Article  Google Scholar 

  • Pinheiro LM, Ivanov MK, Sautkin A, Akhmanov G, Magalhaes VH, Volkonskaya A, Monteiro JH, Somoza L, Gardner J, Hamouni N, Cunha MR (2003) Mud volcanism in the Gulf of Cadiz: results from the TTR-10 cruise. Mar Geol 195:131–151

    Article  Google Scholar 

  • Poulton SW, Krom MD, Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta 68:3703–3715

    Article  Google Scholar 

  • Rice DD, Claypool GE (1981) Generation, accumulation, and resource potential of biogenic gas. Aapg Bull-Am Assoc Petroleum Geol 65:5–25

    Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction induced pore-water expulsion along the Oregon Washington margin. Geol Soc Am Bull 98:147–156

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661

    Google Scholar 

  • Schoell M (1983) Genetic-characterization of natural gases. Aapg Bull-Am Assoc Petroleum Geol 67:2225–2238

    Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the earth. Chem Geol 71:1–10

    Google Scholar 

  • Scientists E (2005) Modern carbonate mounds: porcupine drilling. IODP Prel. Rept., 307. doi:10.2204/iodp.pr.307.2005 http://publications.iodp.org/preliminary_report/307/

  • Seeberg-Elverfeldt J, Schluter M, Feseker T, Kolling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr-Methods 3:361–371

    Article  Google Scholar 

  • Somoza L, Diaz-del-Rio V, Leon R, Ivanov M, Fernandez-Puga MC, Gardner JM, Hernandez-Molina FJ, Pinheiro LM, Rodero J, Lobato A, Maestro A, Vazquez JT, Medialdea T, Fernandez-Salas LM (2003) Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data. Mar Geol 195:153–176

    Article  Google Scholar 

  • Stadnitskaia A, Ivanov MK, Blinova V, Kreulen R, van Weering TCE (2006) Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic. Mar Pet Geol 23:281–296

    Article  Google Scholar 

  • Thamdrup B, Finster K, Fossing H, Hansen JW, Jorgensen BB (1994) Thiosulfate and sulfite distributions in porewater of marine-sediments related to manganese, iron, and sulfur geochemistry. Geochim Cosmochim Acta 58:67–73

    Article  Google Scholar 

  • Titschack J, Thierens M, Dorschel B, Schulbert C, Freiwald A, Kano A, Takashima C, Kawagoe N, Li X, Party IES (2009) Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Mar Geol 259:36–46

    Article  Google Scholar 

  • Treude T, Boetius A, Knittel K, Nauhaus K, Elvert M, Kruger M, Losekann T, Wallmann K, Jorgensen BB, Widdel F, Amman R (2003) Anaerobic oxidation of methane at hydrate ridge (OR). Geochim Cosmochim Acta 67:A491–A491

    Google Scholar 

  • Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert CJ, Boetius A, Jorgensen BB (2005) Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta 69:2767–2779

    Article  Google Scholar 

  • Ussler W III, Paull CK (2008) Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth Planet Sc Lett 266:271–287

    Google Scholar 

  • Van Rensbergen P, Henriet J-P, Depreiter D, Hamoumi N, Ivanov M, Rachidi M (2003) Mud volcanoes, corals and carbonate crusts of the al araiche mud volcano field, Gulf of Cadiz. Results from the Belgica Cadipor and Logachev TTR-12 cruises. Geological and biological processes at deepsea European margins and oceanic basins, International Conference and Eleventh Post-Cruise Meeting of the Training-Through-Research Programme

  • Van Rensbergen P, Depreiter D, Pannemans B, Moerkerke G, Van Rooij D, Marsset B, Akhmanov G, Blinova V, Ivanov M, Rachidi M, Magalhaes V, Pinheiro L, Cunha M, Henriet JP (2005) The El arraiche mud volcano field at the Moroccan Atlantic slope, Gulf of Cadiz. Mar Geol 219:1–17

    Article  Google Scholar 

  • Weaver PPE, Billett DSM, Boetius A, Danovaro R, Freiwald A, Sibuet M (2004) Hotspot ecosystem research on Europe’s deep-ocean margins. Oceanography 17:123–143

    Google Scholar 

  • Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang XH, Mathes F, Ferdelman TG, Fry JC, Weightman AJ, Parkes RJ (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol 11:239–257

    Article  Google Scholar 

  • Wheeler AJ, Beyer A, Freiwald A, de Haas H, Huvenne VAI, Kozachenko M, Roy KOL, Opderbecke J (2007) Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int J Earth Sci 96:37–56

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and fresh-water environments – Co2 reduction vs acetate fermentation isotope evidence. Geochim Cosmochim Acta 50:693–709

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3352–3378

    Google Scholar 

Download references

Acknowledgments

This project was funded by the EURODOM research training network programme from the European Commission under the 5th framework programme and by the European Science Foundation “Microsystems” project. LM, DD, and LDM are recipient of a scholarship from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). The authors wish to thank the crew and shipboard scientific party of the R/V Marion Dufresne led by Y. Balut (IPEV, Institut Paul Emile Victor) and of the R/V Maria S. Merian led by O. Pfannkuche (IFM-Geomar, Kiel). We are grateful to A. Stadnitskaia for her constructive comments on an earlier version of this work. We thank L. Wehrmann, P. de Schryver, and W. de Muynck for their help during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Maignien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maignien, L., Depreiter, D., Foubert, A. et al. Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz. Int J Earth Sci (Geol Rundsch) 100, 1413–1422 (2011). https://doi.org/10.1007/s00531-010-0528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0528-z

Keywords

Navigation