Skip to main content
Log in

Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The coupled chemotaxis fluid system

$$\begin{aligned} \left\{ \begin{array}{lll} n_t=\Delta n-\nabla \cdot (n S(x,n,c)\cdot \nabla c)-u\cdot \nabla n, &{}\quad (x,t)\in \Omega \times (0,T),\\ c_t=\Delta c-nc-u\cdot \nabla c, &{}\quad (x,t)\in \Omega \times (0,T),\\ u_t=\Delta u-(u\cdot \nabla )u+\nabla P+n\nabla \Phi ,\quad \nabla \cdot u=0, &{}\quad (x,t)\in \Omega \times (0,T),\\ \nabla c\cdot \nu =(\nabla n-nS(x,n,c)\cdot \nabla c)\cdot \nu =0, \;\; u=0,&{}\quad (x,t)\in \partial \Omega \times (0,T),\\ n(x,0)=n_{0}(x),\quad c(x,0)=c_{0}(x),\quad u(x,0)=u_0(x), &{}\quad x\in \Omega , \end{array} \right. \end{aligned}$$

where \(S\in (C^2({\overline{\Omega }}\times [0,\infty )^2))^{N\times N}\), is considered in a bounded domain \(\Omega \subset \mathbb {R}^N\), \(N\in \{2,3\}\), with smooth boundary. We show that it has global classical solutions if the initial data satisfy certain smallness conditions and give decay properties of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser. III 35(55)(1), 161–177 (2000) (Dedicated to the memory of Branko Najman)

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35, 1891–1904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation. Nonlinearity 27(8), 1899–1913 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. 33(6), 2271–2297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller-Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39(7), 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chamoun, G., Saad, M., Talhouk, R.: A coupled anisotropic chemotaxis-fluid model: the case of two-sidedly degenerate diffusion. Comput. Math. Appl. 68(9), 1052–1070 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chung, Y.-S., Kang, K., Kim, J.: Global existence of weak solutions for a Keller-Segel-fluid model with nonlinear diffusion. J. Korean Math. Soc. 51(3), 635–654 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28(4), 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. DiLuzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H.C., Whitesides, G.M.: Escherichia coli swim on the right-hand side. Nature 435(7046), 1271–1274 (2005)

    Article  Google Scholar 

  11. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)

    Article  Google Scholar 

  12. Duan, R., Lorz, A., Markowich, P.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35(9), 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. 7, 1833–1852 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fujiwara, D., Morimoto, H.: An \(L_{r}\)-theorem of the Helmholtzdecomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(3), 685–700 (1977)

  16. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L_{r}\) spaces. Math. Z. 178(3), 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

  21. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2), 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hillesdon, A., Pedley, T., Kessler, J.: The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57(2), 299–344 (1995)

    Article  MATH  Google Scholar 

  23. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Hu, B.: Blow-Up Theories for Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 2018. Springer, Heidelberg (2011)

  25. Ishida, S.: Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst. 35(8), 3463–3482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256(8), 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, J., Wu, H., Zheng, S.: Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains. Asymptot. Anal. 92(3–4), 249–258 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MATH  Google Scholar 

  29. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid (2014) (preprint)

  30. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. In: Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  31. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. In: Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968)

  32. Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90(2), 400–412 (2006)

    Article  Google Scholar 

  33. Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25(4), 721–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieberman, G.M.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. Mat. Pura Appl. 4(148), 77–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 643–652 (2011)

  36. Lorz, A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20(6), 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Metcalfe, A., Pedley, T.: Bacterial bioconvection: weakly nonlinear theory for pattern selection. J. Fluid Mech. 370, 249–270 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for theparabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(4), 851–875 (2014)

  39. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations ii: chemotaxis equations. SIAM J. Appl. Math. 62(4), 1222–1250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103(1), 146–178 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simader, C.G.: The weak Dirichlet and Neumann problem for the Laplacian in \(L^q\) for bounded and exterior domains. Applications. In: Nonlinear Analysis, Function Spaces and Applications, vol. 4 (Roudnice nad Labem, 1990) Teubner-Texte Math., vol. 119, pp. 180–223. Teubner, Leipzig (1990)

  42. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser, Basel (2001)

  44. Sokolov, A., Goldstein, R.E., Feldchtein, F.I., Aranson, I.S.: Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys. Rev. E 80, 031903 (2009)

    Article  Google Scholar 

  45. Solonnikov, V.A.: Schauder estimates for the evolutionary generalized Stokes problem. Nonlinear Equations and Spectral Theory. American Mathematical Society Translations: Series 2, vol. 220, pp.165–200. American Mathematical Society, Providence (2007)

  46. Tan, Z., Zhang, X.: Decay estimates of the coupled chemotaxis-fluid equations in \(R^3\). J. Math. Anal. Appl. 410(1), 27–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. 32(5), 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tao, Y., Winkler, M.: Locally bounded global solutions in athree-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(1), 157–178 (2013)

  49. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

  50. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102(7), 2277–2282 (2005)

    Article  MATH  Google Scholar 

  51. Vorotnikov, D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12(3), 545–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. Ser. B 20(9), 3235–3254 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259(12), 7578–7609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wiegner, M.: The Navier-Stokes equations-a neverending challenge? Jahresber. Deutsch. Math.-Verein. 101(1), 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

  55. Winkler,M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire. doi:10.1016/j.anihpc.2015.05.002

  56. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. (to appear). arXiv:1506.05592

  57. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47(4), 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Winkler, M.: A two-dimensional chemotaxis-Stokes system with rotational flux: global solvability, eventual smoothness and stabilization (preprint)

  59. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37(2), 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54(4), 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70(1–2), 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Xue, C., Budrene, E.O., Othmer, H.G.: Radial and spiral streamformation in proteus mirabilis colonies. PLoS Comput. Biol. 7(12), e1002332, 12 (2011)

  65. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70(1), 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ye, X.: Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model. J. Math. Anal. Appl. 427(1), 60–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete Contin. Dyn. Syst. Ser. B 20, 2751–2759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion. J. Differ. Equ. 259(8), 3730–3754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations. SIAM J. Math. Anal. 46(4), 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lankeit.

Additional information

Communicated by Y. Giga.

Appendix A

Appendix A

We have postponed the proof of Lemma 2.4, which mainly consists in elementary calculus, but is too central to the reasoning of the present work to be left unproven. We begin the Appendix by giving this proof. After that, we will take care of a result on the Helmholtz projection, which was used as tool in the proof of Lemma 5.7. Finally, this appendix contains a variant of Lemma 3.1 adapted to the needs of the proof of Theorem 1.2.

Proof of Lemma 2.4

The assertion can be proven similarly as in [59, Lemma 1.2]. A simple observation shows that for any \(t\in [0,\infty )\)

$$\begin{aligned}&\int _0^t(1+s^{-\alpha })(1+(t-s)^{-\beta })e^{-\delta (t-s)}e^{-\gamma s} ds\nonumber \\&\quad \le e^{-\delta t}\int _0^te^{-(\gamma -\delta )s}ds +e^{-\delta t}\int _0^ts^{-\alpha } e^{-(\gamma -\delta )s}ds\nonumber \\&\qquad +\,e^{-\delta t}\int _0^t(t-s)^{-\beta } e^{-(\gamma -\delta )s}ds +e^{-\delta t}\int _0^ts^{-\alpha }(t-s)^{-\beta }e^{-(\gamma -\delta )s} ds. \end{aligned}$$
(A.1)

In order to obtain estimates for the summands, independently of the values of \(\alpha , \beta , \gamma , \delta \), we can start with

$$\begin{aligned} \int _0^te^{-(\gamma -\delta )s}ds = \frac{1}{\gamma -\delta }[1-e^{-(\gamma -\delta )t}]\le \frac{1}{\eta }, \quad t\in [0,\infty ), \end{aligned}$$

and continue by estimating

$$\begin{aligned} \int _0^ts^{-\alpha } e^{-(\gamma -\delta )s}ds\!\le \!\int _0^1s^{-\alpha }ds\!+\!\int _1^\infty e^{-(\gamma -\delta )s} ds \!\le \! \frac{1}{1-\alpha }\!+\!\frac{1}{\gamma -\delta }\!\le \!\frac{2}{\eta }\quad \text {for } t\in [0,\infty ). \end{aligned}$$

Also in the third term on the right hand side of (A.1) we can split the integral and use the obvious estimates \((t-s)^{-\beta }\le 1\) for \(s<t-1\) and \(e^{-(\gamma \!-\!\delta )(t-\sigma )}\!\le \! e^{-(\gamma \!-\!\delta )(-\sigma )}{\le }e^{\gamma -\delta }\) for \(\sigma \in (0,1)\) to obtain

$$\begin{aligned} \int _0^t(t\!-\!s)^{-\beta } e^{-(\gamma -\delta )s}ds\le & {} \int _0^te^{-(\gamma -\delta )s} ds \!+\!\int _0^1 \sigma ^{-\beta }e^{-(\gamma -\delta )(t-\sigma )}d\sigma \!\le \! \frac{1}{\gamma -\delta }+\frac{1}{1-\beta }e^{\gamma -\delta }\\\le & {} \frac{1}{\eta }+\frac{1}{\eta }e^{\frac{1}{\eta }} \end{aligned}$$

for any \(t\in [0,\infty )\). The last integral can be rewritten as

$$\begin{aligned} \int _0^ts^{-\alpha }(t-s)^{-\beta }e^{-(\gamma -\delta )s} ds = t^{1-\alpha -\beta }\int _0^1 \sigma ^{-\alpha }(1-\sigma )^{-\beta }e^{-(\gamma -\delta )\sigma t} d\sigma , \quad t\in [0,\infty ),\nonumber \\ \end{aligned}$$
(A.2)

where we have

$$\begin{aligned} \int _0^1 \sigma ^{-\alpha }(1-\sigma )^{-\beta }e^{-(\gamma -\delta )\sigma t} d\sigma\le & {} \int _0^1 \sigma ^{-\alpha }(1-\sigma )^{-\beta }\le 2^\beta \int _0^{\frac{1}{2}} \sigma ^{-\alpha } d\sigma + 2^\alpha \int _0^{\frac{1}{2}}\sigma ^{-\beta }d\sigma \\\le & {} \frac{2}{1-\alpha }+\frac{2}{1-\beta }\le \frac{4}{\eta }, \end{aligned}$$

so that (A.2) yields the estimate we are aiming for if \(1-\alpha -\beta \le 0\) or if \(t<1\) and \(1-\alpha -\beta >0\). As to \(1-\alpha -\beta >0\) and \(t\ge 1\), we estimate

$$\begin{aligned}&\int _0^1\sigma ^{-\alpha }(1-\sigma )^{-\beta }e^{-(\gamma -\delta )\sigma t} d\sigma \\&\quad \le \int _0^{\frac{1}{2} t^{-\frac{1-\alpha -\beta }{1-\alpha }}}\sigma ^{-\alpha }(1-\sigma )^{-\beta }e^{-(\gamma -\delta )\sigma t} d\sigma +\int _{\frac{1}{2} t^{-\frac{1-\alpha -\beta }{1-\alpha }}}^1 \sigma ^{-\alpha }(1-\sigma )^{-\beta }e^{-(\gamma -\delta )\sigma t}d\sigma \\&\quad \le \left( \frac{1}{2}\right) ^{-\beta }\int _0^{\frac{1}{2} t^{-\frac{1-\alpha -\beta }{1-\alpha }}} \sigma ^{-\alpha } d\sigma + \left( \frac{1}{2} t^{-\frac{1-\alpha -\beta }{1-\alpha }}\right) ^{-\alpha }e^{-(\gamma -\delta ){\frac{1}{2} t^{-\frac{1-\alpha -\beta }{1-\alpha }}}}\\&\qquad \times \int _{\frac{1}{2} t^{-\frac{1-\alpha -\beta }{1-\alpha }}}^1(1-\sigma )^{-\beta }d\sigma \\&\quad \le \frac{2^{\beta +\alpha -1}}{1-\alpha } t^{-(1-\alpha -\beta )} + \frac{2^\alpha }{1-\beta } t^{-(1-\alpha -\beta )} t^{1-\frac{\beta }{1-\alpha }}e^{-\frac{\gamma -\delta }{2} t^{\frac{\beta }{1-\alpha }}}. \end{aligned}$$

Here,

$$\begin{aligned} t^{1-\frac{\beta }{1-\alpha }}e^{-\frac{\gamma -\delta }{2} t^{\frac{\beta }{1-\alpha }}}\le 1+te^{-\frac{\gamma -\delta }{2} t^{\frac{\beta }{1-\alpha }}},\quad t\in [1,\infty ), \end{aligned}$$

where we have

$$\begin{aligned} \frac{\beta }{1-\alpha }\ge \beta , \quad t^{\frac{\beta }{1-\alpha }}\ge t^\beta \ge t^\eta , \end{aligned}$$

because \(t\ge 1\), and hence

$$\begin{aligned} te^{-\frac{\gamma -\delta }{2} t^{\frac{\beta }{1-\alpha }}}\le te^{-\frac{\gamma -\delta }{2} t^\beta } \le te^{-\frac{\eta }{2} t^\eta },\quad t\in [1,\infty ), \end{aligned}$$

which in combination with the finiteness of \( \sup _{t>0} te^{-\frac{\eta }{2} t^\eta } \) implies the assertion. \(\square \)

In order to obtain regularity of u, we have employed the following result in the proof of Lemma 5.7. Other than in [15], we are concerned with the impact of the Helmholtz projection on Hölder-continuous functions (instead of on functions belonging to some \(L^p\)-space only.)

Lemma A.1

Let \(\Omega \subset \mathbb {R}^N\) be a bounded domain with \(\partial \Omega \in C^{1+\alpha }\) for some \(\alpha >0,\) and let \(T>0\). Moreover let \(u\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T])\) and \(u=v+w,\) where \(\nabla \cdot v=0\) in \(\Omega \) and \(v\cdot \nu =0\) on \(\partial \Omega \) and \(w=\nabla \Phi \) for some function \(\Phi \). Then \(v\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T])\).

Proof

We have to find a decomposition \(u=v+w\) with \(\nabla \cdot v=0\) in \(\Omega \) and \(v\cdot \nu =0\) on \(\partial \Omega \) and \(w=\nabla \Phi \) for some function \(\Phi \). We will construct w and conclude from its smoothness that \(\mathscr {P}u=v=u-w\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T];\mathbb {R}^{N})\). As preparation let us consider the elliptic problem

$$\begin{aligned} \Delta \Phi = \nabla \cdot f,\quad \partial _\nu \Phi \big |_{\partial \Omega }=f\cdot \nu \big |_{\partial \Omega }, \quad \int _\Omega \Phi =0. \end{aligned}$$
(A.3)

Only assuming \(f\in C^\alpha (\overline{\Omega };\mathbb {R}^N)\), we fix \(p>N\) and let q be such that \(\frac{1}{p}+\frac{1}{q}=1\). Then [41, Thm. 4.1], which mirrors the usual Lax–Milgram type result in the context of \(L^p\)-spaces also for \(p\ne 2\), asserts the existence of a unique weak solution \(\Phi \!\in \! \{\Phi \!\in \! W^{1,p}(\Omega ), \int _\Omega \Phi =0\}\) such that

$$\begin{aligned} \int _\Omega \nabla \Phi \cdot \nabla \varphi = \int _\Omega f\cdot \nabla \varphi \quad \hbox {for all } \varphi \in W^{1,q}(\Omega ). \end{aligned}$$

Moreover, this solution satisfies

$$\begin{aligned} c_1\Vert \Phi \Vert _{L^\infty (\Omega )}\le & {} c_2\Vert \Phi \Vert _{W^{1,p}(\Omega )}\le \Vert \nabla \Phi \Vert _{L^p(\Omega )}\nonumber \\\le & {} c_3\sup \left\{ \frac{\left|\int _\Omega f\cdot \nabla \varphi \right|}{\Vert \nabla \varphi \Vert _{L^q(\Omega )}};\, \varphi \in W^{1,q}(\Omega ), \nabla \varphi \not \equiv 0\right\} \nonumber \\\le & {} c_3 \Vert f\Vert _{L^p(\Omega )} \le c_4\Vert f\Vert _{C^\alpha (\overline{\Omega })} \end{aligned}$$
(A.4)

with positive constants \(c_1\), \(c_2\), \(c_3\) and \(c_4\) that are guaranteed to exist by the continuity of the embedding \(W^{1,p}(\Omega )\hookrightarrow L^\infty (\Omega )\), Poincaré’s inequality, [41, Thm. 4.1] and continuity of the embedding \(C^{\alpha }(\Omega )\hookrightarrow L^p(\Omega )\), respectively. A standard elliptic regularity result (see [24, Thm. 2.8]) moreover asserts the existence of \(c_5>0\) such that \(C^{1+\alpha }\)-solutions \(\Phi \) of (A.3) satisfy

$$\begin{aligned} \Vert \Phi \Vert _{C^{1+\alpha }(\Omega )}\le c_5(\Vert f\Vert _{C^\alpha (\overline{\Omega })}+\Vert \Phi \Vert _{L^\infty (\Omega )}) \end{aligned}$$

and thus, taking into account (A.4),

$$\begin{aligned} \Vert \Phi \Vert _{C^{1+\alpha }(\overline{\Omega })} \le c_6\Vert f\Vert _{C^\alpha (\overline{\Omega })} \end{aligned}$$

with \(c_6:=c_5(1 + \frac{c_4}{c_1})\).

Approximating \(f\in C^\alpha (\overline{\Omega })\) by a sequence of functions \(\{f_n\}_{n\in \mathbb {N}}\subset C^\infty (\overline{\Omega })\) for which the existence of classical solutions \(\Phi _n\in C^{2+\alpha }(\overline{\Omega })\) is asserted by well-known results [31, Thm. 3.3.2], we see that for \(f\in C^\alpha (\overline{\Omega })\) problem (A.3) has a unique solution \(\Phi \in C^{1+\alpha }(\overline{\Omega })\), which moreover satisfies

$$\begin{aligned} \Vert \Phi \Vert _{C^{1+\alpha }(\overline{\Omega })}\le c_6\Vert f\Vert _{C^\alpha (\overline{\Omega })}. \end{aligned}$$
(A.5)

For each t let \(\Phi (\cdot ,t)\) denote the solution of

$$\begin{aligned} \Delta \Phi (\cdot ,t)=\nabla \cdot u(\cdot ,t), \quad \partial _\nu \Phi (\cdot ,t)\big |_{\partial \Omega }= u(\cdot ,t)\cdot \nu \big |_{\partial \Omega }, \quad \int _\Omega \Phi =0, \end{aligned}$$

and define \(w(\cdot ,t):=\nabla \Phi (\cdot ,t)\) and \(v(\cdot ,t):=u(\cdot ,t)-w(\cdot ,t)\), so that clearly \(\nabla \cdot v=\nabla \cdot u-\nabla \cdot w=\nabla \cdot u-\Delta \Phi =0\) in \(\Omega \) and \(v\cdot \nu =u\cdot \nu -w\cdot \nu =u\cdot \nu -\partial _\nu \Phi =0\) on \(\partial \Omega \). Concerning smoothness, we see that \(\Phi (\cdot ,t)\in C^{1+\alpha }(\overline{\Omega })\) entails \(w(\cdot ,t)\in C^{\alpha }(\overline{\Omega })\) and for \(t_1,t_2\in [0,T]\) we have that \(\Phi (\cdot ,t_2)-\Phi (\cdot ,t_1)={:}\Psi \) solves

$$\begin{aligned} \Delta \Psi = \nabla \cdot (u(\cdot ,t_2)-u(\cdot ,t_1)),\quad \partial _\nu \Psi \big |_{\partial \Omega }= (u(\cdot ,t_2)-u(\cdot ,t_1)) \cdot \nu , \quad \int _\Omega \Psi =0 \end{aligned}$$

so that by (A.5)

$$\begin{aligned} \Vert w(\cdot ,t_2)-w(\cdot ,t_1)\Vert _{C^{\alpha }(\overline{\Omega })}\le \Vert \Psi \Vert _{C^{1+\alpha }(\overline{\Omega })} \le {c_6} \Vert u(\cdot ,t_2)-u(\cdot ,t_1)\Vert _{C^{\alpha }(\overline{\Omega })}. \end{aligned}$$

By the known regularity of u, in conclusion we have \(w\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T])\) and thus \(\mathscr {P}u=v=u-w\in C^{\alpha ,\frac{\alpha }{2}}(\overline{\Omega }\times [0,T];\mathbb {R}^N)\). \(\square \)

The last statement we have postponed to this appendix is concerned with the adaptations necessary for proving Theorem 1.2 instead of Theorem 1.1.

Lemma A.2

Given \(M, N, p_0, q_0, \beta , C_S\) as in Theorem 1.2 and some \(\delta >0,\) it is possible to choose \(M_1,\) \(M_2,\) \(M_3,\) \(M_4,\) \(\varepsilon >0,\) \(m_0<\varepsilon |\Omega |^{-\frac{1}{p_0}}\) such that for all \(m>m_0,\) for all \(\alpha _1\in (\frac{m}{2},\min \{m,\lambda _1-\delta \})\) and \(\alpha _2\in (0,\min \{\alpha _1,\lambda _1'-\delta \})\) the inequalities

$$\begin{aligned}&k_7(N,q_0)+k_5(q_0)k_7(q_0,q_0)(M_1+2k_1)\Vert \nabla \Phi \Vert _{L^\infty (\Omega )} C_1\\&\qquad +\,3k_7\left( {\scriptstyle \frac{N}{1+\frac{N}{q_0}}},q_0\right) k_5\left( {\scriptstyle \frac{N}{1+\frac{N}{q_0}}}\right) M_3M_4C_2\varepsilon \le \frac{M_3}{2}\\&k_8(N,N)+k_8(N,N)k_5(N)|\Omega |^{\frac{q_0-N}{Nq_0}}(M_1+2k_1)\Vert \nabla \Phi \Vert _{L^\infty (\Omega )}C_3\\&\qquad +\,3 M_3M_4k_8({\scriptstyle \frac{1}{\frac{1}{q_0}+\frac{1}{N}}},N) k_5\left( {\scriptstyle \frac{1}{\frac{1}{q_0}+\frac{1}{N}}}\right) C_4{\varepsilon }\le \frac{M_4}{2}\\&k_3+{C_5k_2\left( |\Omega |^{-\frac{1}{p_0}}+M_1+2k_1\right) Me^{(M_1+2k_1)\sigma \varepsilon }\varepsilon }+3k_2M_2M_3 C_6\varepsilon \le \frac{M_2}{2}\\&3C_SC_7k_4M_2\varepsilon |\Omega |^{-\frac{1}{p_0}}+ 3C_SC_7k_4M_2(M_1+2k_1)\varepsilon +3(M_1+{2k_1})C_7k_4M_3\varepsilon \le \frac{M_1}{2}. \end{aligned}$$

hold, where \(k_1,\) \(k_2,\) \(k_3,\) \(k_4,\) \(k_5(\cdot ),\) \(k_7(\cdot ,\cdot ),\) \(k_8(\cdot ,\cdot )\) are taken from Lemmata 2.12.2 and 2.3, and \(C_1,\) \(C_2,\) \(C_3,\) \(C_4,\) \(C_5,\) \(C_6,\) \(C_7\) are the constants defined in Sect. 3.

Proof

The condition \(m_0<\varepsilon |\Omega |^{-\frac{1}{p_0}}\) that is used to ensure the existence of initial data satisfying (1.8) compels us to choose \(m_0\) at the end of this proof, quite in contrast to the situation in Lemma 3.1. Furthermore this makes it necessary to have the estimates during the proof hold regardless of the values of \(\alpha _1\), \(\alpha _2\), which depend on m. Fortunately, \(C_1, \ldots , C_7\) indeed do not depend on \(\alpha _1\), \(\alpha _2\) (and thus not on m), but—thanks to Lemma 2.4—rather on (a lower bound for) the differences between \(\mu \) and \(\alpha _1\), \(\mu \) and \(\alpha _2\) or \(\lambda _1\) and \(\alpha _1\). (This is the purpose \(\delta \) has been introduced for.) The only remaining parameter is \(\sigma =\sigma (\alpha _1)=\int _0^\infty (1+s^{-\frac{N}{2p_0}}) e^{-\alpha _1 s} ds\), which is decreasing with respect to \(\alpha _1\). If we decide to concentrate on relatively “large” values of \(\alpha _1\) only, namely \(\alpha _1>\frac{m}{2}\), (which is of no effect to the generality of Theorem 1.2), given \(m>0\), for any \(\alpha _1\in (\frac{m}{2},\min \{m,\lambda _1-\delta \})\), we may rely on

$$\begin{aligned} \sigma (\alpha _1)\le \int _0^\infty \left( 1+s^{-\frac{N}{2p_0}}\right) e^{-\frac{m}{2} s} ds \le 2\int _0^\infty e^{-\frac{m}{2} s}ds +\int _0^1 s^{-\frac{N}{2p_0}} ds \le \frac{4}{m}+\frac{2p_0}{2p_0-N}. \end{aligned}$$

We pick arbitrary \(M_1>0\) and

$$\begin{aligned} A>(M_1+2k_1)\left( 8|\Omega |^{\frac{1}{p_0}}+\frac{1}{1-\frac{N}{2p_0}}\right) . \end{aligned}$$
(A.6)

Moreover, we can choose \(M_2\) such that \(k_3+C_5k_2(|\Omega |^{-\frac{1}{p_0}}+M_1+2k_1)Me^{A}A \le \frac{M_2}{4}\) and \(M_3\) such that \(k_7(N,q_0)+k_5(q_0)k_7(q_0,q_0)(M_1+2k_1)\Vert \nabla \Phi \Vert _{L^\infty (\Omega )} C_1\le \frac{M_3}{4}\), and we choose \(M_4\) such that \(k_8(N,N)+k_8(N,N)k_5(N)|\Omega |^{\frac{q_0-N}{Nq_0}}(M_1+2k_1)\Vert \nabla \Phi \Vert _{L^\infty (\Omega )}C_3\le \frac{M_4}{4}\). Then we let

$$\begin{aligned} 0<\varepsilon< & {} \min \left\{ A, \frac{1}{12k_2M_3C_6}, \frac{1}{12M_3k_8\left( {\scriptstyle \frac{1}{\frac{1}{q_0}+ \frac{1}{N}}},N\right) k_5\left( {\scriptstyle \frac{1}{\frac{1}{q_0}+\frac{1}{N}}}\right) C_4},\right. \\&\left. \frac{1}{12k_7\left( {\scriptstyle \frac{N}{1+\frac{N}{q_0}}},q_0\right) k_5\left( {\scriptstyle \frac{N}{1+\frac{N}{q_0}}}\right) C_2M_4}, \frac{M_1}{2\left( 3C_SC_7k_4M_2{\left( |\Omega |^{-\frac{1}{p_0}}+M_1+2k_1\right) }+3(M_1+{2k_1})C_7k_4M_3\right) }, 1 \right\} \end{aligned}$$

Finally, we want to choose \(m_0<\varepsilon |\Omega |^{-\frac{1}{p_0}}\) such that \((M_1+2k_1)\sigma (\alpha _1)\varepsilon <A\) for all \(\alpha _1\in ( \frac{m}{2},\min \{m,\lambda _1-\delta \})\), for all \(m>m_0\). This is indeed feasible, since \(\sigma (\frac{\varepsilon }{2}|\Omega |^{-\frac{1}{p_0}})<\frac{A}{(M_1+2k_1)\varepsilon }\) due to

$$\begin{aligned} \varepsilon \sigma \left( \frac{\varepsilon }{2}|\Omega |^{-\frac{1}{p_0}}\right)<\varepsilon \left( \frac{8}{\varepsilon |\Omega |^{-\frac{1}{p_0}}}+\frac{2p_0}{2p_0-N}\right) \le 8|\Omega |^{\frac{1}{p_0}}+\frac{2p_0}{2p_0-N}<\frac{A}{M_1+2k_1} \end{aligned}$$

and by continuity we can find \(m_0<\varepsilon |\Omega |^{-\frac{1}{p_0}}\) so that \(\sigma (\frac{m_0}{2})<\frac{A}{(M_1+2k_1)\varepsilon }\). With this choice, for all \(\alpha _1\in ( \frac{m}{2},\min \{m,\lambda _1-\delta \})\), for all \(m>m_0\), we have \(\sigma (\alpha _1)<\sigma (\frac{m}{2})<\sigma (\frac{m_0}{2})<\frac{A}{(M_1+2k_1)\varepsilon }\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Lankeit, J. Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. 55, 107 (2016). https://doi.org/10.1007/s00526-016-1027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1027-2

Mathematics Subject Classification

Navigation