Skip to main content
Log in

The optimal mass transport problem for relativistic costs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the optimal mass transportation problem in \({\mathbb{R}^{d}}\) for a class of cost functions that we call relativistic cost functions. Consider as a typical example, the cost function c(x, y) = h(xy) being the restriction of a strictly convex and differentiable function to a ball and infinite outside this ball. We show the existence and uniqueness of the optimal map given a relativistic cost function and two measures with compact support, one of the two being absolutely continuous with respect to the Lebesgue measure. With an additional assumption on the support of the initial measure and for supercritical speed of propagation, we also prove the existence of a Kantorovich potential and study the regularity of this map. Besides these general results, a particular attention is given to a specific cost because of its connections with a relativistic heat equation as pointed out by Brenier (Extended Monge–Kantorovich Theory. Optimal Transportation and Applications, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh M.: Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory. Adv. Differ. Equ. 10(3), 309–360 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Lecture Notes on Optimal Transport Problems. Mathematical Aspects of Evolving Interfaces (Funchal, 2000). Lecture Notes in Math., vol. 1812, pp. 1–52. Springer, Berlin (2003)

  3. Ambrosio, L.: Steepest Descent Flows and Applications to Spaces of Probability Measures. Lectures notes. Santander (July 2004)

  4. Ambrosio, L., Pratelli, A.: Existence and Stability Results in the L 1 Theory of Optimal Transportation. Lecture Notes in Math., vol. 1813, pp. 123–160. Springer, Berlin (2003)

  5. Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    Google Scholar 

  6. Ambrosio L., Kirchheim B., Pratelli A.: Existence of optimal transport maps for crystalline norms. Duke Math. J. 125(2), 207–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio L., Gigli N., Savaré G.: Gradient Flows in Metric Spaces and in the Spaces of Probability Measures. Lectures in Mathematics ETH Zurich. Birkauser Verlag, Basel (2005)

    Google Scholar 

  8. Ambrosio L., Colesanti A., Villa E.: Outer Minkowski content for some classes of closed sets. Math. Ann. 342(4), 727–748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andreu F., Caselles V., Mazón J.M.: Existence and uniqueness of solution for a parabolic quasilinear problem for linear growth functionals with L 1 data. Math. Ann. 322, 139–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Andreu F., Caselles V., Mazón J.M. (2004). Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223. Birkhäuser Verlag

  11. Andreu F., Caselles V., Mazón J.M.: A strongly degenerate quasilinear equation: the elliptic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3(3), 555–587 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Andreu F., Caselles V., Mazón J.M.: strong degenerate quasilinear equation: the parabolic case. Arch Rational Mech. Anal. 176(3), 415–453 (2005)

    Article  MATH  Google Scholar 

  13. Andreu F., Caselles V., Mazón J.M.: A strongly degenerate quasilinear elliptic equation. Nonlinear Anal. 61, 637–669 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Andreu F., Caselles V., Mazón J.M.: The Cauchy problem for a strong degenerate quasilinear equation. J. Eur. Math. Soc. 7, 361–393 (2005)

    Article  MATH  Google Scholar 

  15. Andreu F., Caselles V., Mazón J.M., Moll S.: Finite propagation speed for limited flux diffusion equations. Arch. Ration. Mech. Anal. 182(2), 269–297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brenier Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brenier, Y.: Extended Monge–Kantorovich Theory. Optimal Transportation and Applications (Martina Franca, 2001). Lecture Notes in Math., vol. 1813, pp. 91–121. Springer, Berlin (2003)

  19. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. (French) North-Holland Mathematics Studies, No. 5. Notas de Matemà àtica (50). North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York (1973)

  20. Caffarelli L.A., Feldman M., McCann R.J: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Am. Math. Soc. 15(1), 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Caravenna L.: A proof of Sudakov theorem with strictly convex norms. Math. Z. 268(1–2), 371–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carlier G., De Pascale L., Santambrogio F.: A strategy for non-strictly convex transport costs and the example of ||xy||p in \({\mathbb{R}^2}\) . Commun. Math. Sci. 8(4), 931–941 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Caselles V.: Convergence of the “relativistic” heat equation to the heat equation as \({c\to\infty}\) . Publicaciones Matemà àtiques 51(1), 121–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Champion T., De Pascale L.: The Monge problem for strictly convex norms in \({\mathbb{R}^d}\) . J. Eur. Math. Soc. 12(6), 1355–1369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Champion T., De Pascale L.: The Monge problem in \({\mathbb{R}^d}\) . Duke Math. J. 157(3), 551–572 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Champion T., De Pascale L., Juutinen P.: The ∞-Wasserstein distance: local solutions and existence of optimal transport maps. SIAM J. Math. Anal. 40(1), 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Evans, L., Gangbo, W.: Differential equation methods for the Monge kantorovich mass transfer. Memoirs AMS, 653 (1999)

  28. Gangbo W., McCann R.J.: Optimal maps in Monge’s mass transport problem. C. R. Acad. Sci. Paris Sér. I Math. 321(12), 1653–1658 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jimenez, C., Santambrogio, F.: Optimal transportation for a quadratic cost with convex constraints and applications. Journal de Mathématiques Pures et Appliquées, accepted

  31. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kantorovitch L.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  33. McCann R., Puel M.: Constructing a relativistic heat flow by transport time steps. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2539–2580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mihalas, D., Mihalas, B.: Foundations of Radiation Hydrodynamics. Oxford University Press (1984)

  35. Otto, F.: Doubly degenerate diffusion equations as steepest descent (preprint 1996)

  36. Rockafellar R.T.v: Convex analysis. Princeton Mathematical Series No. 28. Princeton University Press, Princeton (1970)

    Google Scholar 

  37. Rosenau P.: Tempered diffusion: a transport process with propagating fronts and initial delay. Phys. Rev. A 46, 7371–7374 (1992)

    Article  Google Scholar 

  38. Schneider R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  39. Smith C.S., Knott M.: Note on the optimal transportation of distributions. J. Optim. Theory Appl. 52(2), 323–329 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Trudinger N.S., Wang X.-J.: On the Monge mass transfer problem. Calc. Var. Partial Differ. Equ. 13(1), 19–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Math., vol. 58. AMS (2003)

  42. Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009); old and new

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Bertrand.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, J., Puel, M. The optimal mass transport problem for relativistic costs. Calc. Var. 46, 353–374 (2013). https://doi.org/10.1007/s00526-011-0485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0485-9

Mathematics Subject Classification (2000)

Navigation