Skip to main content
Log in

Eigenvalue problems with weights in Lorentz spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Given V, w locally integrable functions on a general domain Ω with V ≥  0 but w allowed to change sign, we study the existence of ground states for the nonlinear eigenvalue problem:

$$-\Delta u + V u = \lambda w |u|^{p-2} u, \quad u|_{\partial \Omega} =0,$$

with p subcritical. These are minimizers of the associated Rayleigh quotient whose existence is ensured under suitable assumptions on the weight w. In the present paper we show that an admissible space of weight functions is provided by the closure of smooth functions with compact support in the Lorentz space \({L(\tilde p,\infty)}\) with \({\frac{1}{{\widetilde p}} + \frac{p}{2^{\star}} =1}\) . This generalizes previous results and gives new sufficient conditions ensuring existence of extremals for generalized Hardy–Sobolev inequalities. The existence in such a generality of a principal eigenfunction in the linear case p = 2 is applied to study the bifurcation for semilinear problems of the type

$$-\Delta u= \lambda (a(x)u + b(x) r(u)),$$

where a, b are indefinite weights belonging to some Lorentz spaces, and the function r has subcritical growth at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto W.: Principal eigenvalues for indefinite-weight elliptic problems on \({\mathbb {R}^N}\) . Proc. Amer. Math. Soc. 116, 701–706 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alvino A., Lions P.-L., Trombetti G.: On optimization problems with prescribed rearrangements. Nonlinear Anal. 13, 185–220 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ancona A.: Une propriété d’invariance des ensembles absorbants par perturbation d’un opérateur elliptique. Comm. PDE 4, 321–337 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis H., Ponce A.: Remarks on the strong maximum principle. Differ. Integral Equ. 16, 1–12 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Brezis H., Vazquez J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 2, 443–469 (1997)

    MathSciNet  Google Scholar 

  6. Brown K.J., Cosner C., Fleckinger J.: Principal eigenvalues for problems with indefinite weight function on \({\mathbb {R}^N}\) . Proc. Amer. Math. Soc. 109, 147–155 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brown K.J., Tertikas A.: On the bifurcation of radially symmetric steady-state solutions arising in population genetics. Siam J. Math. Anal. 22, 400–413 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Courant, R., Hilbert, D.: Methods of mathematical physics. vol. I. Interscience Publishers, Inc., New York (1953)

  9. Cuesta M.: Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differ. Equ. 33, 1–9 (2001)

    MathSciNet  Google Scholar 

  10. Deny J., Lions J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier Grenoble 5, 305–370 (1954)

    MathSciNet  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  12. Fleckinger J., Hernández J., de Thélin F.: Existence of multiple eigenvalues for some indefinite linear eigenvalue problems. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 7, 159–188 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Giacomoni J., Lucia M., Ramaswamy M.: Some elliptic semilinear indefinite problems on \({\mathbb R^N}\) . Proc. Roy. Soc. Edinb. 134, 333–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heinonen, J., Kilpeläinen, Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)

  15. Hunt R.: On L(p, q) spaces. Enseignement Math. 12(2), 249–276 (1966)

    MATH  MathSciNet  Google Scholar 

  16. Kawohl B.: Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Syst. 6, 683–690 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kawohl B., Lucia M., Prashanth S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differ. Equ. 12, 407–434 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Lorentz G.G.: Some new functional spaces. Ann. Math. 51, 37–55 (1950)

    Article  MathSciNet  Google Scholar 

  19. Lucia M.: On the uniqueness and simplicity of the principal eigenvalue. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 16, 132–142 (2005)

    MathSciNet  Google Scholar 

  20. Lucia M., Prashanth S.: Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight. Arch. Math. (Basel) 86, 79–89 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Lucia, M., Ramaswamy, M.: Global bifurcation for semilinear elliptic problems. In: Chipot, M., Lin, C.S., Tsai, D.H. (eds.) Recent Advances in Nonlinear Analysis, pp. 197–216. World Scientific (2008)

  22. Manes A., Micheletti A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellitici del secondo ordine. Boll. Un. Mat. Ital. 7, 285–301 (1973)

    MATH  MathSciNet  Google Scholar 

  23. Nazarov A.I.: On the symmetry of extremals in the weight embedding theorem. Function theory and mathematical analysis. J. Math. Sci. (New York) 107, 3841–3859 (2001)

    Article  MathSciNet  Google Scholar 

  24. O’Neil R.: Convolution operators on L(p,q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rabinowitz P.H.: Some global results for nonlinear eigenvalues problems. J. Funct. Anal. 7, 487–517 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  26. Simader, C.G.: On Dirichlet’s boundary value problem. In: An L p-Theory Based on a Generalization of Garding’s Inequality. Lecture Notes in Mathematics, vol. 268. Springer, Berlin-New York (1972)

  27. Stein E.M., Weiss G.: Introduction to Fourier analysis on Euclidean spaces. In: Princeton Mathematical Series, No. 32. Princeton University Press, Princeton (1971)

  28. Szulkin A., Willem M.: Eigenvalue problems with indefinite weight. Stud. Math. 135, 191–201 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Tartar L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez B Artic. Ric. Mat. 1, 479–500 (1998)

    MATH  MathSciNet  Google Scholar 

  30. Tertikas A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154, 42–66 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Visciglia N.: A note about the generalized Hardy–Sobolev inequality with potential in \({L^{p,d}(\mathbb {R}^n)}\) . Calc. Var. Part. Differ. Equ. 24, 167–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Lucia.

Additional information

Supported by Spain Government project MTM2008-06349-C03-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anoop, T.V., Lucia, M. & Ramaswamy, M. Eigenvalue problems with weights in Lorentz spaces. Calc. Var. 36, 355–376 (2009). https://doi.org/10.1007/s00526-009-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0232-7

Mathematics Subject Classification (2000)

Navigation