Calculus of Variations and Partial Differential Equations

, Volume 34, Issue 1, pp 97–137

Some remarks on systems of elliptic equations doubly critical in the whole \({\mathbb{R}^N}\)

Authors

  • Boumediene Abdellaoui
    • Département de MathématiquesUniversité Aboubekr Belkaïd, Tlemcen
  • Veronica Felli
    • Dipartimento di MatematicaUniversità di Milano Bicocca
    • Departamento de MatemáticasUniversidad Autónoma de Madrid
Article

DOI: 10.1007/s00526-008-0177-2

Cite this article as:
Abdellaoui, B., Felli, V. & Peral, I. Calc. Var. (2009) 34: 97. doi:10.1007/s00526-008-0177-2

Abstract

We study the existence of different types of positive solutions to problem
$$\left\{\begin{array}{lll} -\Delta u - \lambda_1\dfrac{u}{|x|^2}-|u|^{2^*-2}u = \nu\,h(x)\alpha\,|u|^{\alpha-2}|v|^{\beta}u, &{\rm in}\,{\mathbb{R}}^{N},\\ &\qquad\qquad\qquad\qquad x \in {\mathbb{R}}^N,\quad N \geq 3,\\ -\Delta v - \lambda_2\dfrac{v}{|x|^2}-|v|^{2^*-2}v = \nu\,h(x)\beta\,|u|^{\alpha}|v|^{\beta-2}v, &{\rm in}\,{\mathbb{R}}^N, \end{array}\right.$$
where \({\lambda_1, \lambda_2 \in (0, \Lambda_N)}\) , \({\Lambda_N := \frac{(N-2)^2}{4}}\) , and \({2* = \frac{2N}{N-2}}\) is the critical Sobolev exponent. A careful analysis of the behavior of Palais-Smale sequences is performed to recover compactness for some ranges of energy levels and to prove the existence of ground state solutions and mountain pass critical points of the associated functional on the Nehari manifold. A variational perturbative method is also used to study the existence of a non trivial manifold of positive solutions which bifurcates from the manifold of solutions to the uncoupled system corresponding to the unperturbed problem obtained for ν = 0.

Keywords

Systems of elliptic equationsCompactness principlesCritical Sobolev exponentHardy potentialDoubly critical problemsVariational methodsPerturbation methods

Mathematics Subject Classification (2000)

35D1035J4535J5035J6046E3046E35

Copyright information

© Springer-Verlag 2008