Singular limits in Liouville-type equations

  • Manuel del Pino
  • Michal Kowalczyk
  • Monica Musso
Article

DOI: 10.1007/s00526-004-0314-5

Cite this article as:
del Pino, M., Kowalczyk, M. & Musso, M. Calc. Var. (2005) 24: 47. doi:10.1007/s00526-004-0314-5

Abstract.

We consider the boundary value problem \( \Delta u + \varepsilon ^{2} k{\left( x \right)}e^{u} = 0\) in a bounded, smooth domain \(\Omega\) in \( \mathbb{R}^{{\text{2}}} \) with homogeneous Dirichlet boundary conditions. Here \( \varepsilon > 0,k(x) \) is a non-negative, not identically zero function. We find conditions under which there exists a solution \( u_{\varepsilon } \) which blows up at exactly m points as \( \varepsilon \to 0 \) and satisfies \( \varepsilon ^{2} {\int_\Omega {ke^{{u_{\varepsilon } }} \to 8m\pi } }% \). In particular, we find that if \(k\in C^2(\bar\Omega)\), \( \inf _{\Omega } k > 0 \) and \(\Omega\) is not simply connected then such a solution exists for any given \(m \ge 1\)

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • Manuel del Pino
    • 1
  • Michal Kowalczyk
    • 2
  • Monica Musso
    • 3
    • 4
  1. 1.Departamento de Ingeniería Matemática and CMMUniversidad de ChileSantiagoChile
  2. 2.Department of Mathematical SciencesKent State UniversityKentUSA
  3. 3.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly
  4. 4.Departamento de MatemáticaPontificia Universidad Catolica de ChileMaculChile

Personalised recommendations