Fuzzy n -fold ideals in BCH -algebras Authors Arsham Borumand Saeid Department of Mathematics Shahid Bahonar University of Kerman A. Namdar Department of Mathematics Islamic Azad University Zarindasht Branch M. Kuchaki Rafsanjani Department of Computer Engineering Islamic Azad University Kerman Branch Original Article

First Online: 13 January 2010 Received: 20 February 2009 Accepted: 29 December 2009 DOI :
10.1007/s00521-009-0336-1

Cite this article as: Borumand Saeid, A., Namdar, A. & Rafsanjani, M.K. Neural Comput & Applic (2010) 19: 775. doi:10.1007/s00521-009-0336-1
Abstract In this paper, we introduce the notion of fuzzy n -folds (P , implicative and fantastic) ideals in BCH -algebras which is a natural generalization of notion of n -folds (P , implicative and fantastic) ideals in BCH -algebras and we stated and proved some theorems which determines the relationship between these notions. Finally we give some computational Algorithms for these notions.

Keywords BCH -algebras(P , implicative, fantastic) Ideal (fuzzy, weak) n -fold (P , implicative, fantastic) Ideal

References 1.

Borumand Saeid A, Namdar A, Borzooei RA Ideal theory of BCH -algebras. World Appl Sci J (to appear)

2.

Borumand Saeid A, Namdar A On n -fold ideals in BCH -algebras and computational algorithms, World Appl Sci J (to appear)

3.

Chaudhry MA, Fakhar-Ud-Din H (2001) On some classes of

BCH -algebra. J I M M S 25:205–211

MATH MathSciNet 4.

Dudek WA, Thomys H (1990) On decompositions of

BCH - algebras. Math Japon 35:1131–1138

MATH MathSciNet 5.

Hajek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht

MATH 6.

Haveshki M, Borumand Saeid A, Eslami E (2006) Some types of filters in

BL -algebras. Soft Comput 10:657–664

MATH CrossRef 7.

Hu QP, Li X (1983) On

BCH - algebras. Math Sem Notes 11:313–320

MATH MathSciNet 8.

Huang YS (2006) BCI -algebra. Science Press, China

9.

Imai Y, Iseki K (1966) On axiom systems of propositional calculi. XIV Proc Jpn Acad 42:19–22

MATH CrossRef MathSciNet 10.

Iseki K (1966) An algebra related with a propositional calculus. XIV Proc Jpn Acad 42:26–29

MATH CrossRef MathSciNet 11.

Iseki K, Tanaka S (1978) An introductation to the theory of

BCK -algebra. Math Jpn 23:1–26

MATH MathSciNet 12.

Iseki K (1980) On

BCI -algebra. Math Sem Notes 8:125–130

MATH MathSciNet 13.

Xi OA (1991) Fuzzy

BCK - algebras. Math Japonica 36:935–942

MATH 14.

Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

MATH CrossRef MathSciNet 15.

Zhang XH, Jiang H, Bhatti SA (1994) On

P -ideals of a

BCI -algebra. Punjab Univ J Math 27:121–128

MATH MathSciNet © Springer-Verlag London Limited 2010