, Volume 15, Issue 8, pp 1601-1616
Date: 10 Feb 2011

Analysis of alternative objective functions for attribute reduction in complete decision tables

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Attribute reduction and reducts are important notions in rough set theory that can preserve discriminatory properties to the highest possible extent similar to the entire set of attributes. In this paper, the relationships among 13 types of alternative objective functions for attribute reduction are systematically analyzed in complete decision tables. For inconsistent and consistent decision tables, it is demonstrated that there are only six and two intrinsically different objective functions for attribute reduction, respectively. Some algorithms have been put forward for minimal attribute reduction according to different objective functions. Through a counterexample, it is shown that heuristic methods cannot always guarantee to produce a minimal reduct. Based on the general definition of discernibility function, a complete algorithm for finding a minimal reduct is proposed. Since it only depends on reasoning mechanisms, it can be applied under any objective function for attribute reduction as long as the corresponding discernibility matrix has been well established.