Soft Computing

, Volume 13, Issue 3, pp 307–318

KEEL: a software tool to assess evolutionary algorithms for data mining problems

  • J. Alcalá-Fdez
  • L. Sánchez
  • S. García
  • M. J. del Jesus
  • S. Ventura
  • J. M. Garrell
  • J. Otero
  • C. Romero
  • J. Bacardit
  • V. M. Rivas
  • J. C. Fernández
  • F. Herrera
Focus

DOI: 10.1007/s00500-008-0323-y

Cite this article as:
Alcalá-Fdez, J., Sánchez, L., García, S. et al. Soft Comput (2009) 13: 307. doi:10.1007/s00500-008-0323-y
  • 2.2k Downloads

Abstract

This paper introduces a software tool named KEEL which is a software tool to assess evolutionary algorithms for Data Mining problems of various kinds including as regression, classification, unsupervised learning, etc. It includes evolutionary learning algorithms based on different approaches: Pittsburgh, Michigan and IRL, as well as the integration of evolutionary learning techniques with different pre-processing techniques, allowing it to perform a complete analysis of any learning model in comparison to existing software tools. Moreover, KEEL has been designed with a double goal: research and educational.

Keywords

Computer-based education Data mining Evolutionary computation Experimental design Graphical programming Java Knowledge extraction Machine learning 

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Alcalá-Fdez
    • 1
  • L. Sánchez
    • 2
  • S. García
    • 1
  • M. J. del Jesus
    • 3
  • S. Ventura
    • 4
  • J. M. Garrell
    • 5
  • J. Otero
    • 2
  • C. Romero
    • 4
  • J. Bacardit
    • 6
  • V. M. Rivas
    • 3
  • J. C. Fernández
    • 4
  • F. Herrera
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Department of Computer ScienceUniversity of OviedoGijónSpain
  3. 3.Department of Computer ScienceUniversity of JaénJaénSpain
  4. 4.Department of Computer Sciences and Numerical AnalysisUniversity of CórdobaCórdobaSpain
  5. 5.Department of Computer ScienceUniversity Ramon LlullBarcelonaSpain
  6. 6.Department of Computer Science and Information TechnologyUniversity of NottinghamNottinghamUK

Personalised recommendations