1.

Aizenberg I, Aizenberg N, Vandewalle J (2000) Multi-valued and universal binary neurons: theory, learning, applications. Kluwer, Boston

2.

Aizenberg I, Bregin T, Butakoff C, Karnaukhov V, Merzlyakov N, Milukova O (2002) Type of blur and blur parameters identification using neural network and its application to image restoration. In: Dorronsoro JR (eds) Lecture notes in computer science, 2415. Springer, Berlin Heidelberg New York, pp 1231–1236

3.

Aizenberg I, Myasnikova E, Samsonova M, Reinitz J (2002) Temporal classification of Drosophila segmentation gene expression patterns by the multi-valued neural recognition method. J Math Biosci 176(1):145–159

CrossRefMathSciNetMATH4.

Aizenberg NN, Ivaskiv Yu L, Pospelov DA (1971) About one generalization of the threshold function (in Russian). The reports of the Academy of Sciences of the USSR. Doklady Akademii Nauk SSSR 196:1287–1290

5.

Aizenberg NN, Ivaskiv Yu L (1977) Multiple-valued threshold logic (in Russian). Naukova Dumka, Kiev

6.

Aizenberg NN, Aizenberg IN (1992) CNN based on multi-valued neuron as a model of associative memory for gray-scale images. In: Proceedings of the second IEEE International workshop on cellular neural networks and their applications, Technical University Munich, Germany, 14–16 October, 1992, pp 36–41

7.

Aoki H, Kosugi Y (2000) An image storage system using complex-valued associative memory. In: Proceedings of the 15th international conference on pattern recognition, vol 2. IEEE Computer Society Press, pp 626–629

8.

Aoki H, Watanabe E, Nagata A, Kosugi Y (2001) image association for endoscopic positional identification using complex-valued associative memories. In: Mira J, Prieto A (eds) Bio-inspired applications of connectionism. Lecture notes in computer science, 2085. Springer, Berlin Heidelberg New York, pp 369–374

9.

Chen J-H, Chen C-S (2002) Fuzzy kernel perceptron. IEEE Trans Neural Netw 13:1364–1373

CrossRef10.

Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition. IEEE Trans Electron Comput 14:326–334

CrossRefMATH11.

Fahlman JD, Lebiere C (1987) Predicting the Mackey–Glass time series. Phys Rev Lett 59:845–847

CrossRefMathSciNet12.

Franco L, Cannas SA (2001) Generalization properties of modular networks: implementing the parity function. IEEE Trans Neural Netw 12:1306–1313

CrossRef13.

Funahashi KI (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183–192

CrossRef14.

Fung H, Li LK (2001) Minimal feedforward parity networks using threshold gates. Neural Comput 13:319–326

CrossRefMATH15.

Georgiou GM, Koutsougeras C (1992) Complex domain backpropagation. IEEE Trans Circuits Syst CAS-II 39:330–334

CrossRefMATH16.

Gorman RP, Sejnowski TJ (1988) Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw 1:75–89

CrossRef17.

Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliff

MATH18.

Hecht-Nielsen R (1988) Kolmogorov mapping neural network existence theorem. In: Proceedings of the 1st IEEE international conference on neural networks, vol 3. IEEE Computer Society Press, pp 11–13

19.

Hecht-Nielsen R (1990) Neurocomputing. Addison Wesley, New York

20.

Hirose A (ed) (2003) Complex valued neural networks. Theories and applications. World Scientific, Singapore

MATH21.

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward neural networks are universal approximators. Neural Netw 2:259–366

CrossRef22.

Impagliazzo R, Paturi R, Saks ME (1997) Size-depth tradeoffs for threshold circuits. SIAM J Comput 26:693–707

CrossRefMathSciNetMATH23.

Islam MM, Yao X, Murase K (2003) A constructive algorithm for training cooperative neural networks ensembles. IEEE Trans Neural Netw 14:820–834

CrossRef24.

Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst, Man Cybern 23:665–685

CrossRef25.

Jankowski S, Lozowski A, Zurada JM (1996) Complex-valued multistate neural associative memory. IEEE Trans Neural Netw 7:1491–1496

CrossRef26.

Kim D, Kim C (1997) Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans Neural Netw 5:523–535

27.

Kolmogorov AN (1957) On the representation of continuous functions of many variables by superposition of continuous functions and addition (in Russian). The Reports of the Academy of Sciences of the USSR. Doklady Akademii Nauk SSSR 114:953–956

MathSciNetMATH28.

Lee S-H, Kim I (1994) Time series analysis using fuzzy learning. In: Proceedings of the international conference on neural information processing, Seoul, Korea, vol 6, pp 1577–1582

29.

Leung H, Haykin S (1991) The complex backpropagation algorithm. IEEE Trans Signal Process 39:2101–2104

CrossRef30.

Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

CrossRef31.

Mizutani E, Dreyfus SE, Jang J-SR (2000) On dynamic programming-like recursive gradient formula for alleviating hidden-node saturation in the parity problem. In: Proceedings of the international workshop on intelligent systems resolutions – the 8th Bellman continuum, Hsinchu, Taiwan, pp 100–104

32.

Mizutani E, Dreyfus SE (2002) MLP’s hidden-node saturations and insensitivity to initial weights in two classification benchmark problems: parity and two-spirals. In: Proceedings of the 2002 international joint conference on neural networks (IJCNN’02), pp 2831–2836

33.

Muezzinoglu MK, Guzelis C, Zurada JM (2003) A new design method for the complex-valued multistate hopfield associative memory. IEEE Trans Neural Netw 14:891–899

CrossRef34.

Müller K-R, Mika S, Rätsch G, Tsuda K, Shölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181–201

CrossRef35.

Nitta T (1997) An extension of the backpropagation algorithm to complex numbers. Neural Netw 10:1391–1415

CrossRef36.

Paul S, Kumar S (2002) Subsethood-product fuzzy neural inference system (SuPFuNIS). IEEE Trans Neural Netw 13:578–599

CrossRef37.

Rumelhart DE, McClelland JL (1986) Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge

38.

Russo M (2000) Genetic fuzzy learning. IEEE Trans Evol Comput 4:259–273

CrossRef39.

Siegelman H, Sontag E (1991) Neural nets are universal computing devices. Research Report SYCON-91–08. Rutgers Center for Systems and Control. Rutgers University

40.

Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin Heidelberg New York

MATH41.

Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8:694–713

CrossRef