[1]
N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld and N. Xie: Testing κ-wise and almost κ-wise independence, in: STOC, pages 496–505, 2007.
[2]
A. Bernasconi: Mathematical Techniques for the Analysis of Boolean Functions, PhD thesis, Università degli Studi di Pisa, Dipartimento de Informatica, 1998.
[3]
A. Blum: Relevant examples and relevant features: Thoughts from computational learning theory; in: AAAI Symposium on Relevance, 1994.
[4]
A. Blum: Open problems, COLT, 2003.
[5]
A. Blum, M. Furst, M. Kearns and R. J. Lipton: Cryptographic primitives based on hard learning problems, in: CRYPTO, pages 278–291, 1993.
[6]
A. Blum and
P. Langley: Selection of relevant features and examples in machine learning,
Artificial Intelligence
97 (1997), 245–271.
MATHCrossRefMathSciNet [7]
N. Bshouty, J. Jackson and C. Tamon: More efficient PAC learning of DNF with membership queries under the uniform distribution, in: Annual Conference on Computational Learning Theory, pages 286–295, 1999.
[8]
P. Cameron: Combinatorics: topics, techniques, algorithms; Cambridge University Press, 1994.
[9]
D. Helmbold, R. Sloan and
M. Warmuth: Learning integer lattices,
SIAM Journal of Computing
21(2) (1992), 240–266.
MATHCrossRefMathSciNet [10]
J. Jackson: An efficient membership-query algorithm for learning dnf with respect to the uniform distribution,
Journal of Computer and System Sciences
55 (1997), 414–440.
MATHCrossRefMathSciNet [11]
M. Kolountzakis, E. Markakis and A. Mehta: Learning symmetric juntas in time n
o(κ), in: Proceedings of the conference Interface entre l’analyse harmonique et la theorie des nombres, CIRM, Luminy, 2005.
[12]
A. Kumchev: The distribution of prime numbers, manuscript, 2005.
[13]
N. Linial, Y. Mansour and
N. Nisan: Constant depth circuits, fourier transform and learnability;
Journal of the ACM
40(3) (1993), 607–620.
MATHCrossRefMathSciNet [14]
R. Lipton, E. Markakis, A. Mehta and N. Vishnoi: On the fourier spectrum of symmetric boolean functions with applications to learning symmetric juntas, in: IEEE Conference on Computational Complexity (CCC), pages 112–119, 2005.
[15]
Y. Mansour: An
o(
n
loglogn) learning algorithm for DNF under the uniform distribution,
Journal of Computer and System Sciences
50 (1995), 543–550.
MATHCrossRefMathSciNet [16]
E. Mossel, R. O’Donnell and R. Servedio: Learning juntas, in: STOC, pages 206-212, 2003.
[17]
G. Pólya and G. Szegő: Problems and theorems in Analysis, II; Springer, 1976.
[18]
T. Siegenthaler: Correlation-immunity of nonlinear combining functions for cryptographic applications,
IEEE Transactions on Information Theory
30(5) (1984), 776–780.
MATHCrossRefMathSciNet [19]
L. Valiant: A theory of the learnable,
Communications of the ACM
27(11) (1984), 1134–1142.
MATHCrossRef [20]
K. Verbeurgt: Learning DNF under the uniform distribution in quasi-polynomial time, in: Annual Workshop on Computational Learning Theory, pages 314–326, 1990.
[21]
K. Verbeurgt: Learning sub-classes of monotone DNF on the uniform distribution, in: Algorithmic Learning Theory, 9th International Conference (Michael M. Richter, Carl H. Smith, Rolf Wiehagen, and Thomas Zeugmann, editors), pages 385–399, 1998.
[22]
J. von zur Gathen and
J. Roche: Polynomials with two values,
Combinatorica
17(3) (1997), 345–362.
MATHCrossRefMathSciNet