, Volume 28, Issue 5, pp 595-623

Graph-like continua, augmenting arcs, and Menger’s theorem

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We show that an adaptation of the augmenting path method for graphs proves Menger’s Theorem for wide classes of topological spaces. For example, it holds for locally compact, locally connected, metric spaces, as already known. The method lends itself particularly well to another class of spaces, namely the locally arcwise connected, hereditarily locally connected, metric spaces. Finally, it applies to every space where every point can be separated from every closed set not containing it by a finite set, in particular to every subspace of the Freudenthal compactification of a locally finite, connected graph. While closed subsets of such a space behave nicely in that they are compact and locally connected (and therefore locally arcwise connected), the general subspaces do not: They may be connected without being arcwise connected. Nevertheless, they satisfy Menger’s Theorem.

This work was carried out while Antoine Vella was a Marie Curie Fellow at the Technical University of Denmark, as part of the research project TOPGRAPHS (Contract MEIF-CT-2005-009922), under the supervision of Carsten Thomassen.